1. Welcome

主要讲四部分内容:

non-personized systems

  popularity: 基于流行度或者最大利益化的推荐。 缺点也明显:你可能在特殊地方有些特殊需求, 或者你本来就是大多数人不一样

  Association: 找出订单里一起下单的物品的相关性,一般有Aproiri, FP 等算法

collaborative filtering

matrix factorization (and its variant like probablistic matrix factorization),  also known as SVD

Deep learning

  

2. Simple recommentation systems

基于popularity 的推荐要考虑时效性,比如一则新闻虽然曾经是爆炸性的阅读量很多,但是不合适出现新闻的推荐中,这就需要在popularity 和 age(时间老化) 之间做平衡.

具体地,Hacker News 网站用的公式为:也叫 rank formula

另一个具体的例子是Reddit:

如果平均值一样,那么需要考虑rating 个数,可以参考下面公式:

google 的 PageRank 算法是基于 Markov 模型的. Markov 模型就是NLP里面的unigram, bigram 的概念,基于前面的条件算出后面结果出现的概率.

怎么评估 Rank 结果

3. Collaborative Filtering

user-user CF - based on user-user similarity

item-item CF - based on item-item similarity

参考资料[2] 里面有具体的代码,不过不是矩阵实现,最好看我翻译的另一篇文章 Comprehensive Guide to build a Recommendation Engine from scratch (in Python) / 从0开始搭建推荐系统, 这里有矩阵实现, 更快而且我觉得更明白.

4. Matrix Factorization & Deep Leanring

4.1 Matrix Factorization

  

1. 先来个最basic 版的matrix factorization 的公式,就是把矩阵X分解成 X=WU. metric 用 Sum Squere Error.

2. 再考虑 bias, user bias 和 item bias

  

  

3. formulas: with regularization

  

  

4. MF with SVD, 确定是不能有missing data (MF 和SVD 很相似,MF有两个矩阵U和V, SVD 有3个 U,S,V)

  

5. Probabilistic Matrix Factorization, 没看懂,只能拷些图片在这里了

  

  

  

6. Bayesian Matrix Factorization, 也没看懂,讲者说是optional 就不看了

7. matrix factorization in Keres

# keras model
u = Input(shape=(1,))
m = Input(shape=(1,))
u_embedding = Embedding(N, K, embeddings_regularizer=l2(reg))(u) # (N, 1, K)
m_embedding = Embedding(M, K, embeddings_regularizer=l2(reg))(m) # (N, 1, K) # subsubmodel = Model([u, m], [u_embedding, m_embedding])
# user_ids = df_train.userId.values[0:5]
# movie_ids = df_train.movie_idx.values[0:5]
# print("user_ids.shape", user_ids.shape)
# p = subsubmodel.predict([user_ids, movie_ids])
# print("p[0].shape:", p[0].shape)
# print("p[1].shape:", p[1].shape)
# exit() u_bias = Embedding(N, 1, embeddings_regularizer=l2(reg))(u) # (N, 1, 1)
m_bias = Embedding(M, 1, embeddings_regularizer=l2(reg))(m) # (N, 1, 1)
x = Dot(axes=2)([u_embedding, m_embedding]) # (N, 1, 1) # submodel = Model([u, m], x)
# user_ids = df_train.userId.values[0:5]
# movie_ids = df_train.movie_idx.values[0:5]
# p = submodel.predict([user_ids, movie_ids])
# print("p.shape:", p.shape)
# exit() x = Add()([x, u_bias, m_bias])
x = Flatten()(x) # (N, 1)

model = Model(inputs=[u, m], outputs=x)
model.compile(
loss='mse',
# optimizer='adam',
# optimizer=Adam(lr=0.01),
optimizer=SGD(lr=0.08, momentum=0.9),
metrics=['mse'],
)

 

4. 2 Deep Learning

1. 在matrix factorization 上加了deep network, 形成的 deep learning. 前面讲的 matrix factorization 只是linear model, deep learning 会提供 non-linear 能力,所以理论上比只有前面棕色部分(matrix factorization部分)好

2. 还可以先分支网络,然后再合并,课程里叫 residual, 我觉得不是computer vision里面的 resnet 的概念.

  

3. 还可以用 AutoEncoder (AutoRec), 这个算法本来是用来复原图片的.  model.fit(X, X)  not model.fix(X, Y).

  

AutoRec 比deep learning 快,原因如下

AutoRec 算法要注意一个问题,因为这个算法是用来反推输入X的,输出就是预测的输入,所有网络可能会直接copy back, 有欺骗性。因此,我们不能直接用 test_set 来预测 test_set 的输出,而是用train_set 来预测test_set, 看下面代码

  

5. Retricted Boltzmann Machines (RBMs) for Collaborative Filtering

受限波兹曼机(RBMs)是波兹曼机的简化版,不是全部连接,只需要 visible nodes 和 hidden nodes 连接就行.

  

确实有点点难懂...

Others:

Explore-Exploit dilemma 概念: 比如,你在youtube上看视屏学炒鸡蛋,你看了很多视屏学会了炒鸡蛋,结果因为看的视屏多,在你学会了炒鸡蛋过后youtube还是老是给你推荐炒鸡蛋视屏,这就是explore-exploit dilemma, 数据越多结果越差.

Ref:

  1. [Udemy] Recommender Sytem and Deep Learning in Python
  2. https://github.com/mashuai191/machine_learning_examples/tree/master/recommenders
  3. 谷歌PageRank算法简单解释

[Udemy] Recommender Systems and Deep Learning in Python的更多相关文章

  1. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  2. Conclusions about Deep Learning with Python

     Conclusions about Deep Learning with Python  Last night, I start to learn the python for deep learn ...

  3. Deep learning with Python 学习笔记(11)

    总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深 ...

  4. Deep learning with Python 学习笔记(10)

    生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 ...

  5. Deep learning with Python 学习笔记(9)

    神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推 ...

  6. Deep learning with Python 学习笔记(8)

    Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Ker ...

  7. Deep learning with Python 学习笔记(7)

    介绍一维卷积神经网络 卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据.这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效. ...

  8. Deep learning with Python 学习笔记(6)

    本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息. ...

  9. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

随机推荐

  1. 从ES6重新认识JavaScript设计模式: 装饰器模式

    1 什么是装饰器模式 向一个现有的对象添加新的功能,同时又不改变其结构的设计模式被称为装饰器模式(Decorator Pattern),它是作为现有的类的一个包装(Wrapper). 可以将装饰器理解 ...

  2. 左侧点击后右侧添加tab标签栏以及内容

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  3. ECarts 的初步使用

    ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等) ...

  4. Java缓存Ehcache-Ehcache的Cache在SSM框架中的配置

    需要在Spring配置文件中配置: <!-- 配置缓存管理器工厂 --> <bean id="cacheManager" class="org.spri ...

  5. 封装和private,this,super关键字的简单应用

    1.将成员变量用private修饰 2.提供对应的getxx()和setxx()方法 public class Student { private String name; private int a ...

  6. Raven2

     Raven2实验 0x01 寻找IP 本机IP:56.130 1. 使用 nmap -sn "ip6"#主机发现(不进行端口扫描) https://cloud.tencent.c ...

  7. [Windows] GIF编辑器

    目录 1. 功能简介 2. 下载地址 3. 使用教程 3.1. 其他视频转gif的方案 1. 功能简介 可以自定义录屏位置.区域大小做GIF 可以编辑GIF.压缩GIF等 可以将视频转换成GIF 可以 ...

  8. Redux中间件之redux-thunk使用详解

    Redux的核心概念其实很简单:将需要修改的state都存入到store里,发起一个action用来描述发生了什么,用reducers描述action如何改变state tree .创建store的时 ...

  9. objectMaaper 反序列化json字段多于或少于实体处理

    两种方式 1 忽略json上未知的字段 设置实体类注解 @JsonIgnoreProperties(ignoreUnknown = true) public class Foo { ... } 2 配 ...

  10. layui树形表格支持非异步和异步加载

    layui树形表格支持非异步和异步加载. 仓库地址:https://gitee.com/uniqid/ 使用示例如下: <div class="uui-admin-common-bod ...