生成对抗网络 Generative Adversarial Networks
转自:https://zhuanlan.zhihu.com/p/26499443
生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在2014年提出的机器学习架构。
要全面理解生成对抗网络,首先要理解的概念是监督式学习和非监督式学习。监督式学习是指基于大量带有标签的训练集与测试集的机器学习过程,比如监督式图片分类器需要一系列图片和对应的标签(“猫”,“狗”…),而非监督式学习则不需要这么多额外的工作,它们可以自己从错误中进行学习,并降低未来出错的概率。监督式学习的缺点就是需要大量标签样本,这非常耗时耗力。非监督式学习虽然没有这个问题,但准确率往往更低。自然而然地希望能够通过提升非监督式学习的性能,从而减少对监督式学习的依赖。GAN可以说是对于非监督式学习的一种提升。
第二个需要理解的概念是“生成模型”, 如下图所示生成图片模型的概念示意图。这类模型能够通过输入的样本产生可能的输出。举个例子,一个生成模型可以通过视频的某一帧预测出下一帧的输出。另一个例子是搜索引擎,在你输入的同时,搜索引擎已经在推断你可能搜索的内容了。

基于上面这两个概念就可以设计生成对抗网络GAN了。相比于传统的神经网络模型,GAN是一种全新的非监督式的架构(如下图所示)。GAN包括了两套独立的网络,两者之间作为互相对抗的目标。第一套网络是我们需要训练的分类器(下图中的D),用来分辨是否是真实数据还是虚假数据;第二套网络是生成器(下图中的G),生成类似于真实样本的随机样本,并将其作为假样本。
详细说明:
D作为一个图片分类器,对于一系列图片区分不同的动物。生成器G的目标是绘制出非常接近的伪造图片来欺骗D,做法是选取训练数据潜在空间中的元素进行组合,并加入随机噪音,例如在这里可以选取一个猫的图片,然后给猫加上第三只眼睛,以此作为假数据。
在训练过程中,D会接收真数据和G产生的假数据,它的任务是判断图片是属于真数据的还是假数据的。对于最后输出的结果,可以同时对两方的参数进行调优。如果D判断正确,那就需要调整G的参数从而使得生成的假数据更为逼真;如果D判断错误,则需调节D的参数,避免下次类似判断出错。训练会一直持续到两者进入到一个均衡和谐的状态。
训练后的产物是一个质量较高的自动生成器和一个判断能力较强强的分类器。前者可以用于机器创作(自动画出“猫”“狗”),而后者则可以用来机器分类(自动判断“猫”“狗”)。
最后这里给出一个生成对抗网络的列表。
参考资料
[1] https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian
[3] 深度 | 一篇文章带你进入无监督学习:从基本概念到四种实现模型(附论文)
生成对抗网络 Generative Adversarial Networks的更多相关文章
- 对抗生成网络 Generative Adversarial Networks
1. Basic idea 基本任务:要得到一个generator,能够模拟想要的数据分布.(一个低维向量到一个高维向量的映射) discriminator就像是一个score function. 如 ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 生成对抗网络(Generative Adversarial Networks, GAN)
生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一. GAN 主要包括了两个部分,即 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- 生成对抗网络(GAN)
GAN的全称是 Generative Adversarial Networks,中文名称是生成对抗网络.原始的GAN是一种无监督学习方法,巧妙的利用“博弈”的思想来学习生成式模型. 1 GAN的原理 ...
- 2019-3-10——生成对抗网络GAN---生成mnist手写数字图像
""" 生成对抗网络(GAN,Generative Adversarial Networks)的基本原理很简单: 假设有两个网络,生成网络G和判别网络D.生成网络G接受一 ...
- 不到 200 行代码,教你如何用 Keras 搭建生成对抗网络(GAN)【转】
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Netwo ...
- 渐进结构—条件生成对抗网络(PSGAN)
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversa ...
- Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...
随机推荐
- linux命令之查找find &grep
区别:find找目录下的文件:find+目录路径+条件表达式,grep找文件中的行:grep+匹配正则表达式+文件名 find命令 find命令的一般形式 find命令的常用选项及实例 find与xa ...
- install_github无法安装 Rwebdriver包的解决方法
1.通过install_githtb安装Rwebdriver包的错误如下: 提示不能打开URL,但是将URL地址输入浏览器地址栏,则可以下载包到本地 2.在网上搜索,发现可以通过本地文件来安装(ins ...
- 【c++进阶:c++ 顺序容器vector,string,deque,list,forward_list,array常用性质】
常用5种顺序容器性质: https://blog.csdn.net/oil_you/article/details/82821833 关于deque https://www.cnblogs.com/L ...
- Eclipse设置保存时自动格式化代码
在使用eclipse时,经常需要使用到Ctrl+Shift+F来格式化代码,可以打开保存时格式化,会更方便. 打开方式:Window-->Preferences-->Java --> ...
- html5获取位置信息,h5获取位置信息
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 【MM系列】SAP 关于物料间的替代问题
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP 关于物料间的替代问题 前 ...
- Canvas入门02-绘制直线
主要使用的API有: context.moveTo(x,y) 声明线的起始坐标 context.lineTo(x,y) 声明线的下一个坐标 context.fillStyle 声明线的填充颜色 co ...
- 开篇——从程序员到IT经理
2002年~2005年我在广州的广东水力电力职业技术学院求学,主修网络工程.求学期间,我从事最多的就是玩游戏,当时就是玩MU和CS,所以有一门编程课叫C语言的“肥佬”(广东话)了,要补考,没办法,于是 ...
- MySQL-快速入门(6)连接查询、子查询、正则表达式查询、数据的插入删除更新
1.内连接查询:inner join ... on 只有满足条件的记录才能够出现在结果关系中,即完全相等.自连接查询是一种特殊的内连接查询. 2.外连接查询: 1>左外连接 / 左连接:返回包括 ...
- 在excel中如何计算两个时间之间的差[转]
因为时间是由序列号所代表的,用户可以用较晚的时间减去较早的时间以得到间隔.例如,单元格A3含有5:30,单元格B3含有14:00,下面的公式返回8:30(间隔8小时30分). =B3-A3 然而,如果 ...