BZOJ 3203 Luogu P3299 [SDOI2013]保护出题人 (凸包、斜率优化、二分)
惊了,我怎么这么菜啊。。
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=3203
(luogu)https://www.luogu.org/problemnew/show/P3299
题解: 先讲正常做法。
设\(S_i\)为\(i\)的前缀和,则显然第\(i\)次答案为\(\max^i_{j=1} \frac{S_i-S_{j-1}}{x_i+id-jd}\)
那么很显然就是要求从一个点\((x_i+id,S_i)\)到\((jd,S_{j-1})\)的斜率最大值啊。。三分凸壳就行了啊。。想什么呢。。。
下面是我的垃圾做法,有兴趣的可以感受一下(我相信没人有兴趣)
考虑斜率优化(我就是陷入套路无法自拔的垃圾),首先为了方便我们把输入的\(x_i\)加上\(id\)并记作\(x_0\), 目前的总和记作\(S\), \(1\)到\((i-1)\)的和记作\(S_i\)(和上面定义不同),考虑\(i\)不比\(j\)差(\(i<j\))的条件: $$\frac{S-S_i}{x_0-id}>\frac{S-S_j}{x_0-jd}$$展开后解得$$x_0\ge\frac{iS-jS-iS_j+jS_i}{S_j-S_i}d$$考虑三个点\(i<j<k\), \(i\)不比\(j\)劣的条件是$$x_0\ge\frac{iS-jS-iS_j+jS_i}{S_j-S_i}d$$ \(k\)不比\(j\)劣的条件是$$x_0\le\frac{jS-kS-jS_k+kS_j}{S_k-S_j}d$$若后者大于等于前者则无论\(x_0\)为何值此两个条件至少满足一个,\(j\)无用。
然后尝试化这个式子: $$\frac{jS-kS-jS_k+kS_j}{S_k-S_j}\ge \frac{iS-jS-iS_j+jS_i}{S_j-S_i}$$ $$iS_jS_k-iS_j^2-jS_iS_k+jS_iS_j+jSS_k-jSS_j-iSS_k+iSS_j\le jS_kS_j-jS_iS_k-kS_j^2+kS_iS_j+kSS_j-kSS_i-jSS_j+jSS_i$$ $$(i-j)S_jS_k+(k-i)S_j^2+(j-k)S_iS_j+(j-i)SS_k+(i-k)SS_j+(k-j)SS_i\le 0$$ 尝试因式分解 $$(S_j-S)(iS_k-jS_k+kS_j-iS_j+jS_i-kS_i)\le 0$$ 因为\(S_j-S\)显然小于\(0\), 所以$$iS_k-jS_k+kS_j-iS_j+jS_i-kS_i\ge 0$$ 这个东西一看就是可以拆添项的: $$iS_k-jS_k+kS_j-jS_j-iS_j+jS_j+iS_k-jS_k\le 0$$ $$(j-k)(S_i-S_j)-(i-j)(S_j-S_k)\le 0$$ $$\frac{S_i-S_j}{i-j}\le \frac{S_j-S_k}{j-k}$$
这是\(j\)无用的条件,所以只需要维护斜率不增的上凸壳即可
……
我真的蠢到一定境界了
代码
当然是我的垃圾做法的代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#define llong long long
using namespace std;
struct Point
{
double x,y;
Point() {}
Point(llong _x,llong _y) {x = _x,y = _y;}
};
const int N = 1e5;
Point ch[N+3];
double s[N+3];
double a[N+3];
double qr[N+3];
int n,tp;
double d;
void insertpoint(Point x)
{
while(tp>1 && (ch[tp].y-ch[tp-1].y)*(x.x-ch[tp].x)>=(x.y-ch[tp].y)*(ch[tp].x-ch[tp-1].x)) {tp--;}
tp++; ch[tp] = x;
// printf("CH: size=%d ",tp);
// for(int i=1; i<=tp; i++) printf("(%lf %lf) ",ch[i].x,ch[i].y); puts("");
}
double query(double x,double sum)
{
// printf("query(%lf %lf)\n",x,sum);
int left = 1,right = tp;
while(left<right)
{
int mid = (left+right+1)>>1;
bool ok = x*(ch[mid].y-ch[mid-1].y)<=(ch[mid-1].x*ch[mid].y-ch[mid].x*ch[mid-1].y+ch[mid].x*sum-ch[mid-1].x*sum)*d ? true : false;
if(ok) {left = mid;}
else {right = mid-1;}
}
// printf("left=%d\n",left);
double ret = (sum-ch[left].y)/(x-ch[left].x*d);
return ret;
}
int main()
{
scanf("%d%lf",&n,&d);
for(int i=1; i<=n; i++)
{
scanf("%lf%lf",&a[i],&qr[i]);
s[i] = s[i-1]+a[i-1];
qr[i] += i*d;
}
s[n+1] = s[n]+a[n];
double sans = 0.0;
for(int i=1; i<=n; i++)
{
insertpoint(Point(i,s[i]));
double ans = query(qr[i],s[i+1]);
sans += ans;
// printf("i%d ans%lf\n",i,ans);
}
printf("%lld\n",(llong)(sans+0.5));
return 0;
}
BZOJ 3203 Luogu P3299 [SDOI2013]保护出题人 (凸包、斜率优化、二分)的更多相关文章
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- bzoj 3203: [Sdoi2013]保护出题人 凸包
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3203 题解 首先我们考虑对一大波僵尸来袭的情况进行分析 假设来袭的僵尸是\(\{ a_1 ...
- BZOJ 3203 [SDOI2013]保护出题人 (凸包+三分)
洛谷传送门 题目大意:太长略 每新加入一个僵尸,容易得到方程$ans[i]=max{\frac{sum_{i}-sum_{j-1}}{s_{i}+d(i-j)}}$ 即从头开始每一段僵尸都需要在规定距 ...
- P3299 [SDOI2013]保护出题人
传送门 全世界都会二分可海星-- 首先记\(sum[i]\)为\(a[i]\)的前缀和,那么第\(i\)个的答案就是\(max\{\frac{sum[i]-sum[j-1]}{x+(i-j)d}\}\ ...
- 【bzoj3203】[Sdoi2013]保护出题人 凸包+二分
题目描述 输入 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + 1行为Ai和 Xi,分别表示相比上一关在僵尸队列排头增加血量为Ai 点的 ...
- [BZOJ3203][SDOI2013]保护出题人(凸包+三分)
https://www.cnblogs.com/Skyminer/p/6435544.html 先不要急于转化成几何模型,先把式子化到底再对应到几何图形中去. #include<cstdio&g ...
- 【BZOJ3203】[Sdoi2013]保护出题人 二分+凸包
[BZOJ3203][Sdoi2013]保护出题人 Description Input 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + ...
- [BZOJ3203] [SDOI2013]保护出题人(二分+凸包)
[BZOJ3203] [SDOI2013]保护出题人(二分+凸包) 题面 题面较长,略 分析 对于第i关,我们算出能够打死前k个个僵尸的最小能力值,再取最大值就可以得到\(y_i\). 前j-1个僵尸 ...
- [SDOI2013]保护出题人
题目 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013的参赛者 ...
随机推荐
- [Python3] 031 常用模块 shutil & zipfile
目录 shutil 1. shutil.copy() 2. shutil.copy2() 3. shutil.copyfile() 4. shutil.move() 5. 归档 5.1 shutil. ...
- Java第四周总结报告
本周做了什么? 学习了Java的面向对象知识,包括对类,对象,抽象的理解 下周准备做什么? 学习Java面向对象的有关知识,包括对象与类,继承关系等内容 代码联系时间五个小时,看书四个小时. 本周遇到 ...
- Radio Button误区
在同一个父容器下,Radio Button控件默认只能选择一个,所以无需多余代码管控 如果将Radio Button的多个子对象存入NSArray列表,发现长度为0(巨坑),因此通过列表对其初始化不可 ...
- 父进程pid和子进程pid的大小关系
如果进程ID最大值没有达到系统进程数的上限,子进程比父进程ID大.但是如果进程ID达到上限,系统会分配之前分配但是已经退出的进程ID给新进程,这样有可能出现子进程ID比父进程小.
- Tensorflow API 学习(1)-tf.slice()
slice()函数原型为: tf.slice(input_, begin, size, name=None) 函数有4个参数: 1,input_ :图片的矩阵输入格式. 2,begin :开始截取的位 ...
- luogu P5328 [ZJOI2019]浙江省选
传送门 每个人都可以看成一条直线\(y=ax+b\),所以我们要求的是每条线在整点处,上方线的数量的最小值(注意多条直线如果交于同一整点互不影响) 如果\(m=1\),其实只要求出半平面交,然后在半平 ...
- js 类型转变
在绝大部分情况下,操作符和函数可以自动将一个值转换成正确的数据类型.这被称为"类型转变(type conversion)". 举个例子,alert 自动转变任何类型的参数为字符串类 ...
- 深入理解JVM-垃圾回收器
摘要: JVM垃圾回收器 看完<深入理解JVM>,结合网上资料后根据跟人理解整理出的简洁版,主要关注是什么, 怎么做到的,特点等,没有进入深入剖析,旨在快速了解,具体应用时个人再根据具体点 ...
- Centos7安装Python3的方法[转]
Centos7安装Python3的方法 由于centos7原本就安装了Python2,而且这个Python2不能被删除,因为有很多系统命令,比如yum都要用到. [root@VM_105_217_ ...
- PL/SQL中判断字段为空
功能写完发现数据库里好多关键字段是空的,可以直接删掉,可直接: DELETE FROM 表名 WHERE 字段 IS NULL OR TRIM(字段) = ''