ZROI 19.08.03 分治与离线
- 经典问题,给一张图,支持加边/删边/询问两点连通性。
离线统计边权(删除时间),lct维护最大生成树即可。
也可以按时间分治,维护一个可回退并查集即可。
- 主定理
很好用,但是记不住。
有一种简明的替代方式:画一棵递归树,考虑层数和每层的节点数(线段树分析.jpg)
- 分治时递归和处理中心的顺序可以是任意的,可以按照具体情况选择,以 简化复杂度。
- 快速排序的期望复杂度:
\[T(n)=\frac{1}{n}\sum_{i=1}^n[T(i-1)+T(n-i)]+n-1=\frac{2}{n}\sum_{i=0}^{n-1}T(i)+n-1\]
\[n\cdot T(n)=2\sum_{i=0}^{n-1}T(i)+n(n-1)\]
\[(n-1)\cdot T(n-1)=2\sum_{i=0}^{n-2}T(i)+(n-1)(n-2)\]
\[n\cdot T(n)-(n-1)\cdot T(n-1)=2T(n-1)+2(n-1)\]
\[n\cdot T(n)=(n+1)T(n-1)+2(n-1)\]
\[\frac{T(n)}{n+1}=\frac{T(n-1)}{n}+\frac{2(n-1)}{n(n+1)}\]
\[F(n)=\frac{T(n)}{n+1}=\sum_i^n\frac{2(i-1)}{i(i+1)}\leq \sum_i^n \frac{2}{i}=2\ln n\]
\[T(n)=O(n\log n)\]
对于期望复杂度经典的证明方法,乘上\(n\)再错位相减。
- 定理:期望为\(O(f(n))\)的复杂度退化到\(O(g(n))\)的概率小于\(\frac{f(n)}{g(n)}\),而且这个上界非常宽松,大多数时候都达不到。
- \(O(n)\)找第\(k\)大
考虑快速排序的过程,按某个中间值分成两半,然后找对的一边递归下去。期望\(O(n)\),然而最劣是\(O(n^2)\)。
发现最劣的情况在于每次都划分出一个大小为\(1\)的子问题。
可以把原序列分成\(5\)份,排成一个\(5\times \frac n5\)的表格。对每一列找出中位数,然后找到列的中位数,从这个位置划分,可以保证每次问题规模最少降低\(O(\frac{3}{10}n)\)。
然而没什么用,因为常数巨大。
给我们的启发意义在于,我们可以通过一些(大)合(常)理(数)手段划分分治中心,从而降低复杂度。
分治fft
三维偏序:cdq分治
- \(n\)个红点,\(n\)个黑点,没有重复或三点共线。求一个红黑点的完美匹配,使得连线互不相交,保证有解。\(n \leq 10^4\)。
sd省集讲过,然而我又忘了。
提示:对于任意这样的\(2n\)个点,解一定存在。
证明:只需要找到总长度最小的一种方案,一定不会有交点。
一定可以找到一条直线把点集分开,使得两边红黑点个数均相等。考虑坐标最小的某个点为原点,把剩余点按照极角排序,由于不存在三点共线,则一定有这样的位置,恰好使两边相等。
最劣是\(O(n^2\log n)\),但是每次旋转一个角度,随机选点跑得很快,\(O(\)能过\()\)。
- 给\(n\)个整数\(a_i\),求\(\min_{i<j}\{ (j-i)^2+(\sum_{k=i+1}^j a_k)^2 \}\)。\(n\leq 10^5\)。
把\(a_i\)取个前缀和\(S_i\),发现把\((i,S_i)\)看作一个点,就是一个平面上距离。平面最近点对即可。我一开始想分治+斜率优化来着。
- 给定一棵树,问有多少个大小为\(k\)的点集,使得存在节点\(u\),使得任意一个\(v\in S\),有\(dis(u,v)\leq L\)。\(n\leq 10^5\)。
对于一个点集\(S\),满足条件的点构成一个连通块。树上连通块点数-边数=1,所以对于每个点、每条边分别统计满足条件的点集容斥一下即可。
统计点集相当于对每个点(或边建出来的虚点)统计距离不超过\(L\)的点数,然后算个组合数就好了。邻域是经典问题,点分树就好了。
- 以\(1\)为根的二叉树,对它任意一个包含\(1\)的连通块,给连通块内每个点赋一个权值\(w_i\),块外的点权值为\(0\),每个点的权值满足\(w_i\geq \sum w_{son_i},w_1=x\),求所有连通块的所有\(w_i\)的方案的和。\(n\leq 10^5,x\leq 10^{18}\)。
令\(b_i=w_i-\sum w_{son_i}\),则原条件等价于\(b_i\geq 0,\sum b_i=x\)。设连通块大小为\(m\),则它的权值就是\(C(x+m-1,m)\)。
于是问题变成统计以\(1\)为根,大小为\(m\in[1,n]\)的连通块个数。
这个若干天前讲过,求生成函数,树剖后分治fft即可。所以二叉树这个性质有什么用
“动态点分治模板题,大家一定都做过,不用讲了。”
点分树支持动态添加叶子,需要像替罪羊树一样重构。
- 有向图\(G\),支持动态加边,求每次加边后\((u,v)\)数,使得\((u,v)\)互相可达,允许离线。\(n,q\leq 10^5\)。
等价于对每条边\((u,v)\),统计\((u,v)\)是什么时候开始相互可达的,然后用并查集计算即可。
整体二分。设\(solve(l,r,S)\)表示\(S\)里所有边都是在\([l,r]\)时间段开始相互可达的。(在执行这个函数之前,且所有加入时间在\([1,l)\)的,且在\(S\)内的边均已加入并缩点完毕,孤立点被删除。)
我们把\(S\)中\([l,mid]\)的边都加入然后缩点,即可据此把\(S\)分为两部分,递归即可。右边可以直接递归,左边需要对缩点可回退化一下。代码很不可写。只对涉及到的点进行计算,单次递归复杂度是\(O(|S|)\)的,每条边只会被计算\(O(\log)\)次。
- 给定一个\(w\times h\)的网格,每次允许向右、上、下走,都有对应的权值,求左边一列每个点到右边一列每个点的最短路长度和。\(w\times h\leq 2\times 10^5\)。
维护从左上角出发的最短路径树。
发现起点向下移动的时候,每个点在树上的父亲是逆时针单调旋转的,且最多变\(2\)次。
对于一个时间区间\([l,r]\),如果一个点没有变父亲,它们是可以缩起来的。然后就和上一题一模一样了。
- 离线求逆元
类似阶乘逆元的求法,求前缀积然后反向递推回去即可。复杂度\(O(n+\log p)\)。
- 树上并查集
树上分块+四毛子,块大小\(O(\log\log n)\),可以做到线性。
- 离线LCA
Tarjan+并查集实现。
ZROI 19.08.03 分治与离线的更多相关文章
- ZROI 19.08.03 DP入门
\(n\)个点,要求连一棵树,设点\(i\)的度数为\(d_i\),则其贡献为\(f(d_i)\mod 59393\),其中\(f(x)\)是一个\(k\)次多项式.最大化总贡献.\(n\leq 30 ...
- ZROI 19.08.02 计算几何
1.向量基础知识 \(atan2\)可以求极角,但是不是特别精确,在坐标接近\(10^{9}\)时会出锅,安全的做法是叉积. 旋转.反射和平移等都可以抽象为矩阵,即,它们可以复合.(需要一些必修四知识 ...
- ZROI 19.08.01 树上数据结构
1.总览 LCT 链分治(树剖) 点/边分治 2.点分治 一棵树,点有\(0/1\),多次修改,询问最远的两个\(1\)距离. 建出点分树,每个子树用堆维护:①最远的\(1\)距离:②它的每个儿子的① ...
- ZROI 19.08.12模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...
- ZROI 19.08.06模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...
- ZROI 19.08.02 杂题选讲
给出\(n\)个数,用最少的\(2^k\)或\(-2^{k}\),使得能拼出所有数,输出方案.\(n,|a_i|\leq 10^5\). 显然一个绝对值最多选一次.这个性质非常强. 如果所有都是偶数, ...
- ZROI 19.08.01 生成函数方法
写在前面:由于我数学基础不好,加上缺乏生成函数知识,所以这一下午我都处在掉线和非掉线的叠加态.而且我写\(\LaTeX\)很慢,所以笔记相当混乱而且不全面.说白了就是我太菜了听不懂. 1.一般生成函数 ...
- ZROI 19.08.11模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...
- ZROI 19.08.10模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...
随机推荐
- 阶段3 2.Spring_09.JdbcTemplate的基本使用_2 JdbcTemplate的概述和入门
先看这张图 1.spring中的JdbcTemplate JdbcTemplate的作用: 它就是用于和数据库交互的,实现对表的CRUD操作 如何创建该对象: ...
- Linux下监控网卡流量的软件Nload
Linux下监控网卡流量的软件Nload 安装nload: # wget http://www.roland-riegel.de/nload/nload-0.7.2.tar.gz # tar zxvf ...
- Day05:访问控制 、 static和final
访问控制 package(包) 什么是包? 组织java文件的一个单位 为什么需要包? 将相关的java文件组织在一个包里 将项目中同名的类,方法在不同包中,不会冲突 注意: 包名全部小写,如果多个单 ...
- Pytorch笔记 (3) 科学计算1
一.张量 标量 可以看作是 零维张量 向量 可以看作是 一维张量 矩阵 可以看作是 二维张量 继续扩展数据的维度,可以得到更高维度的张量 ————> 张量又称 多维数组 给定一个张量数据 ...
- oop理论
三大特性: 封装:把对象的属性和行为独立的一个整体,并尽可能的隐藏对象内部实现细节.增加安全性. 继承:从已有的类中派生出新的类,称为子类,子类继承父类的属性和行为,并能根据自己的需求扩展出新的行为. ...
- Kaggle试水之泰坦尼克灾难
比赛地址:https://www.kaggle.com/c/titanic 再次想吐槽CSDN,编辑界面经常卡死,各种按钮不能点,注释的颜色不能改,很难看清.写了很多卡死要崩溃. 我也是第一次参加这个 ...
- 【电子电路技术】短波红外InGaAs探测器简析
核心提示: 红外线是波长介于微波与可见光之间的电磁波,波长在0.75-1000μm之间,其在军事.通讯.探测.医疗等方面有广泛的应用.目前对红外线的分类还没有统一的标准,各个专业根据应用的需要,有着自 ...
- linux free 命令 查看内存使用情况
查看Linux服务器下的内存使用情况,可以使用命令free -m [root@localhost ~]$ free // 以KB为单位显示内存使用情况 [root@localhost ~]$ free ...
- excel常用公式--逻辑运算类
if: IF(logical_test, value_if_true, [value_if_false]). and: 逻辑判断,相当于“并”. or: 逻辑判断,相当于“或”.
- 渗透测试环境搭建以及使用sqlmap获取mysql用户数据库密码
通过sqlmap检测sql注入漏洞 安装SQLmap漏洞查看工具 安装渗透测试演练系统DVWA 使用SQLmap进行sql注入并获得后台管理员adnim帐号和密码 环境介绍 安装SQLmap:Rich ...