【洛谷P2398】GCD SUM
题目大意:求 $$\sum\limits_{i=1}n\sum\limits_{j=1}ngcd(i,j)$$
题解:
最重要的一步变换在于。
\]
令 $$t = kd$$,枚举 \(t\) 得
\]
根据狄利克雷卷积可知,后面求和为欧拉函数 \(\varphi(t)\)。最后线性筛+除法分块即可,时间复杂度 \(O(n)\)。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
typedef long long LL;
int n,prime[maxn],tot;
LL phi[maxn],sum[maxn];
bool vis[maxn];
void sieve(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i])prime[++tot]=i,phi[i]=i-1;
for(int j=1;i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i];
}
void solve(){
LL ans=0;
for(int i=1;i<=n;i++){
int j=n/(n/i);
ans+=(LL)(n/i)*(n/i)*(sum[j]-sum[i-1]);
i=j;
}
printf("%lld\n",ans);
}
int main(){
scanf("%d",&n);
sieve();
solve();
return 0;
}
【洛谷P2398】GCD SUM的更多相关文章
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷P2398 GCD SUM
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- P2398 GCD SUM
P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
随机推荐
- Python深度学习读书笔记-1.什么是深度学习
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?
- spring hibernate 事务整合 使用测试类 事务不自动提交的问题!!!
使用JUnit 测试hibernate 事务管理的时候应注意 ,测试类完成是默认回滚的. 所以只能查询数据库却不能增删改数据库. 应该在测试类上面加上注解 @Rollback(false) 表似默认 ...
- QT Desinger设计窗体应用程序框架
目录 目录 前言 系统软件 QT Designer Using QT Designer Open QTDesigner Tool Widget Box QT Designer的布局 属性栏 示例 i ...
- 获取win10壁纸
执行命令会将所有壁纸拷贝到桌面上的wallpaper文件夹内 bat xcopy %LOCALAPPDATA%\Packages\Microsoft.Windows.ContentDeliveryMa ...
- ftp搭建mysql服务器
一.将mysql放入FTP服务器中1.安装FTP yum install -y vsftpd2.准备ftp主目录 mkdir /var/ftp/mysql57/3.官网下载yum仓库的包. ...
- LAMP框架
一基本常识 LNMP (Linux + Nginx + MySQL + PHP) LAMP (Linux + Apache + MySQL + PHP) //php作为Apache的模块Apache. ...
- 应用安全 - Web框架 - Apache Solr - 漏洞汇总
CVE-2019-12409 Date: // 类型: 配置不当导致远程代码执行 前置条件: 影响范围: Solr and for Linux Solr下载:https://www.apache.or ...
- 你知道 Java 类是如何被加载的吗?
前言 最近给一个非 Java 方向的朋友讲了下双亲委派模型,朋友让我写篇文章深度研究下JVM 的 ClassLoader,我确实也好久没写 JVM 相关的文章了,有点手痒痒,涂了皮炎平也抑制不住的那种 ...
- uboot启动第一阶段分析
一. uboot第一阶段初识 1.1. 什么是uboot第一阶段 1.1.1. 启动os三个阶段 1.1.1.1. bl0阶段 a. 这段代码是三星固化到iROM中,可以查看<S5PV210_i ...
- 解决ie低版本不认识html5标签
在不支持HTML5新标签的浏览器里,会将这些新的标签解析成行内元素(inline)对待,所以我们只需要将其转换成块元素(block)即可使用,但是在IE9版本以下,并不能正常解析这些新标签,但是却可以 ...