题目大意:求 $$\sum\limits_{i=1}n\sum\limits_{j=1}ngcd(i,j)$$

题解:

最重要的一步变换在于。

\[\sum\limits_{k=1}^n k \sum\limits_{d=1}^{\lfloor{n\over k}\rfloor}\mu(d)\lfloor{n\over kd}\rfloor\lfloor{n\over kd}\rfloor
\]

令 $$t = kd$$,枚举 \(t\) 得

\[\sum\limits_{t=1}^n\lfloor{n\over t}\rfloor\lfloor{n\over t}\rfloor \sum\limits_{k|t}\mu({t\over k})k
\]

根据狄利克雷卷积可知,后面求和为欧拉函数 \(\varphi(t)\)。最后线性筛+除法分块即可,时间复杂度 \(O(n)\)。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
typedef long long LL; int n,prime[maxn],tot;
LL phi[maxn],sum[maxn];
bool vis[maxn]; void sieve(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i])prime[++tot]=i,phi[i]=i-1;
for(int j=1;i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i];
} void solve(){
LL ans=0;
for(int i=1;i<=n;i++){
int j=n/(n/i);
ans+=(LL)(n/i)*(n/i)*(sum[j]-sum[i-1]);
i=j;
}
printf("%lld\n",ans);
} int main(){
scanf("%d",&n);
sieve();
solve();
return 0;
}

【洛谷P2398】GCD SUM的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  3. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  4. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  5. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  6. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  7. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  8. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  9. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

随机推荐

  1. leetcode-easy-array-217. Contains Duplicate

    mycode  76.39% class Solution(object): def containsDuplicate(self, nums): """ :type n ...

  2. 基于RANSAC的点云面分割算法

    该算法在RANSAC和空间检索树的基础上实现的. 算法思路: 1.点云抽希.法线估计 2.出局点索引存储声明 3.平面检测 for (size_t i = 0; i < cloudTemp-&g ...

  3. 思科端口聚合的命令是channel-group

    锐捷设备的端口聚合命令是: int range f0/1-2 port-group 1 --------------------- == 思科设备的端口聚合 是: int range f0/1-2 c ...

  4. 旋转数组 空间复杂度为O(1) 的2 种方法 + 1种空间复杂度O(n)

    题目地址 : 旋转数组. 网上好多不是根本就是错的,就是空间复杂度不是真正为1 下面总结一下 方法1 普通方法(空间复杂度不满足要求,但是题目并不会判错,说明他们没用对空间进行校验) ··· publ ...

  5. 原生JS去重

    方式一: function deleteRepetionChar(arr){ //先判断输入进来的是数组对象还是字符串 if( typeof arr == "object"){ v ...

  6. Linux监控命令之==>sar

    一.使用说明 sar 是目前 Linux 上最为全面的系统性能分析工具之一,可以从多方面对系统的活动进行报告,包括:文件的读写情况.系统调用的使用情况.磁盘I/O.CPU效率.内存使用状况.进程活动及 ...

  7. sklearn+nltk ——情感分析(积极、消极)

    转载:https://www.iteye.com/blog/dengkane-2406703 步骤: 1 有标签的数据.数据:好评文本:pos_text.txt  差评文本:neg_text.txt ...

  8. 函数参数中经常见到的*args和**kwargs

    在python中,这两个是python中的可变参数,*arg表示任意多个无名参数,类型为tuple;**kwargs表示关键字参数,为dict. 例如下面这个代码可以利用*args计算传入的n个数的平 ...

  9. glide使用总结

    1 glide是什么 glide是一个图片加载和缓存库. 2 glide的使用 第一,添加依赖 implementation 'com.github.bumptech.glide:glide:4.5. ...

  10. 关于Pulsar与Kafka

    在本系列的Pulsar和Kafka比较文章中,我将引导您完成我认为重要的几个领域,并且对于人们选择强大,高可用性,高性能的流式消息传递平台至关重要.消息传递模型(Messaging model)是用户 ...