A - Misha and Permutations Summation

首先这个 mod n! 因为数量级上的差别最多只会对康拓展开的第一项起作用所以这个题并不需要把 ord (p) 和 ord (q) 的具体值算出来,因为最后还需要进行康托逆展开所以用一 个数组来储存对应的值即可然后利用变进制的思想把 s[ ] 数组处理一下即可

变进制处理 s[ ] 数组:

for(int i=n-1;i>=1;--i)
s[i-1]+=s[i]/(n-i+1),s[i]=s[i]%(n-i+1);

代码:

// Created by CAD on 2019/8/10.
#include <bits/stdc++.h>
#define mst(name, value) memset(name,value,sizeof(name))
#define lowbit(x) (x&(-x))
using namespace std;
using pii=pair<int, int>;
using piii=pair<pair<int, int>, int>;
using ll=long long; const int maxn=2e5+5;
int p[maxn],q[maxn];
int c[maxn],s[maxn];
int num[maxn],n;
void add(int x,int k)
{
while(x<=n)
c[x]+=k,x+=lowbit(x);
}
ll getsum(int x)
{
ll ans=0;
while(x>0)
ans+=c[x],x-=lowbit(x);
return ans;
}
void init()
{
mst(c,0);
for(int i=1;i<=n;++i) add(i,1);
} int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
init();
for(int i=1;i<=n;++i)
{
cin>>p[i],p[i]++;
s[i]+=getsum(p[i]-1);
add(p[i],-1);
}
init();
for(int i=1;i<=n;++i)
{
cin>>q[i],q[i]++;
s[i]+=getsum(q[i]-1);
add(q[i],-1);
}
for(int i=n-1;i>=1;--i)
s[i-1]+=s[i]/(n-i+1),s[i]=s[i]%(n-i+1);
init();
for(int i=1;i<=n;++i)
{
int l=1,r=n,ans;
while(l<=r)
{
int mid=(l+r)>>1;
if(getsum(mid-1)<=s[i])
l=mid+1,ans=mid;
else r=mid-1;
}
num[i]=ans;
add(ans,-1);
}
for(int i=1;i<n;++i) cout<<num[i]-1<<' ';
cout<<num[n]-1<<endl;
return 0;
}

Misha and Permutations Summation的更多相关文章

  1. Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组

    题意:给出两个排列,求出每个排列在全排列的排行,相加,模上n!(全排列个数)得出一个数k,求出排行为k的排列. 解法:首先要得出定位方法,即知道某个排列是第几个排列.比如 (0, 1, 2), (0, ...

  2. [Codeforces 501D] - Misha and Permutations Summation

    题意是给你两个长度为$n$的排列,他们分别是$n$的第$a$个和第$b$个全排列.输出$n$的第$\left(a+b \right)\textrm{mod} \, n!$个全排列. 一种很容易的想法是 ...

  3. Codeforces Round #285 (Div. 1) B - Misha and Permutations Summation 康拓展开+平衡树

    思路:很裸的康拓展开.. 我的平衡树居然跑的比树状数组+二分还慢.. #include<bits/stdc++.h> #define LL long long #define fi fir ...

  4. CF501D Misha and Permutations Summation(康托展开)

    将一个排列映射到一个数的方法就叫做康托展开.它的具体做法是这样的,对于一个给定的排列{ai}(i=1,2,3...n),对于每个ai求有多少个aj,使得j>i且ai>aj,简单来说就是求a ...

  5. 【codeforces 501D】Misha and Permutations Summation

    [题目链接]:http://codeforces.com/problemset/problem/501/D [题意] 给你两个排列; 求出它们的字典序num1和num2; 然后让你求出第(num1+n ...

  6. CF数据结构练习

    1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...

  7. Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  8. [LeetCode] Permutations II 全排列之二

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  9. [LeetCode] Permutations 全排列

    Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...

随机推荐

  1. JavaRMI框架

     RMI(即Remote Method Invoke 远程方法调用).在Java中,只要一个类extends了java.rmi.Remote接口,即可成为存在于服务器端的远程对象,供客户端访问并提供一 ...

  2. # N数码问题

    N数码问题 首先,先贯彻一个理念.奇偶性很神奇,对于一类问题,如果属于同种性质(奇偶性相同),那么它们就是完全相同(这个在某种意义上说)的,,一些问题如果奇偶性相同那么里面涉及的问题都是等价的. 数码 ...

  3. Java后端技术面试汇总(第一套)

    面试汇总,整理一波,doc文档可点击[此处下载] 1.基础篇 1.1.Java基础 • 面向对象的特征:继承.封装和多态• final, finally, finalize 的区别• Exceptio ...

  4. FastDFS集群部署(转载 写的比较好)

    FastDFS集群部署   之前介绍过关于FastDFS单机部署,详见博文:FastDFS+Nginx(单点部署)事例 下面来玩下FastDFS集群部署,实现高可用(HA) 服务器规划: 跟踪服务器1 ...

  5. CSS---解决文本溢出,换行

    当我们设置我的的div,或者其它文本框固定宽度之后,文本内容过多就会出文本溢出(显示在区域外面,不换行的情况). 这时我们可以使用Css中的几个属于来解.有以下的三个属于可以解决问题: 1,word- ...

  6. MySQL主从延时这么长,要怎么优化?

    MySQL主从复制,读写分离是互联网常见的数据库架构,该架构最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重. 为什么主从延时这么大? 答:MySQL使用单线程重放RelayL ...

  7. js特效背景--点线随着鼠标移动而改变

    https://blog.csdn.net/css33/article/details/89450852 https://www.cnblogs.com/qq597585136/p/7019755.h ...

  8. 关于catopen函数

    关于catopen函数: 参考网址:http://pubs.opengroup.org/onlinepubs/009695399/functions/catopen.html 1)编辑消息文件 [ro ...

  9. arcgis 地图如何转到supermap平台

    场景:客户使用arcmap配置好的地图数据,由于项目需要转换到超图平台.有如下几种思路供参考. 1. 使用arcmap生成地图缓存,supermap-iServer支持发布arcgis的地图缓存以及t ...

  10. redis和mongodb面试题(一)

    ● 请你回答一下mongodb和redis的区别 参考回答: 内存管理机制上:Redis 数据全部存在内存,定期写入磁盘,当内存不够时,可以选择指定的 LRU 算法删除数据.MongoDB 数据存在内 ...