一本通 高手训练 1781 死亡之树 状态压缩dp
LINK:死亡之树
关于去重 还是有讲究的。
题目求本质不同的 具有k个叶子节点的树的个数 不能上矩阵树。
点数很少容易想到装压dp 考虑如何刻画树的形状 发现一个维度做不了 所以。
设状态 f[i][j]表示 点的集合为i叶子集合的点为j的方案树。
这样我们就能知道这棵树大致的样子 空间 为\(2^{2n}\)
当然 如果使用三进制状压 空间复杂度还会进一步降到3^n 不过这道题没有卡空间。
考虑转移 可以枚举点 也可以枚举边。
先考虑枚举边 会出现重复的情况 如先加这条边再加那条边 两条边可以交换。
考虑强制按顺序的话 需要记上次加入的边是什么。时间上过不了。
考虑最后除以(n-1)! 这样也不行因为 这样的话 每次考虑加入边的时候点的状态的刻画存在问题。
考虑枚举点 此时实质还是在加边 还是有重复的。
甚至在某个时刻都有可能出现顺序带来方案数不同的问题。
还是考虑点的有序性 考虑 从一个状态到达另外一个状态转移的唯一性。
可以发现在枚举决策的时候 只有当前决策大于叶子节点的最大的那个再进行转移 此时这样就保证了每一种树都是以唯一的方式构造出来的。
证明 倒着想 考虑当前的一棵树的上一个状态 一定是当前状态减掉最大编号的叶子节点得到的 如果不是 那么上个状态是不能转移到当前状态的。
归纳一下可以得证。
const ll MAXN=11;
ll n,maxx,m,K;
ll sum[1<<MAXN];
ll f[1<<MAXN][1<<MAXN];
ll a[MAXN][MAXN];
signed main()
{
freopen("dead.in","r",stdin);
freopen("dead.out","w",stdout);
get(n);get(m);get(K);
rep(1,m,i)
{
ll get(x);ll get(y);
a[x][y]=a[y][x]=1;
}
rep(2,n,i)if(a[1][i])f[1|(1<<(i-1))][1|(1<<(i-1))]=1;
maxx=(1<<n)-1;
rep(1,maxx,i)sum[i]=sum[i>>1]+(i&1);
rep(1,maxx,i)
{
for(ll j=i;j;j=i&(j-1))
{
if(!f[i][j])continue;
for(ll k=1;k<=n;++k)
{
if(!(i&(1<<(k-1))))continue;
ll w=j;
if(j&((1<<(k-1))))w=w^(1<<(k-1));
for(ll cc=1;cc<=n;++cc)
{
if((1<<(cc-1))<w)continue;
if(i&(1<<(cc-1)))continue;
if(!a[k][cc])continue;
if(sum[w|(1<<(cc-1))]>K)continue;
f[i|(1<<(cc-1))][w|(1<<(cc-1))]+=f[i][j];
}
}
}
}
ll ans=0;
for(ll j=maxx;j;j=maxx&(j-1))if(sum[j]==K)ans+=f[maxx][j];
putl(ans);return 0;
}
一本通 高手训练 1781 死亡之树 状态压缩dp的更多相关文章
- HDU 4085 Peach Blossom Spring 斯坦纳树 状态压缩DP+SPFA
状态压缩dp+spfa解斯坦纳树 枚举子树的形态 dp[i][j] = min(dp[i][j], dp[i][k]+dp[i][l]) 当中k和l是对j的一个划分 依照边进行松弛 dp[i][j] ...
- POJ 3691 (AC自动机+状态压缩DP)
题目链接: http://poj.org/problem?id=3691 题目大意:给定N个致病DNA片段以及一个最终DNA片段.问最终DNA片段最少修改多少个字符,使得不包含任一致病DNA. 解题 ...
- [动态规划]状态压缩DP小结
1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...
- Codeforces C. A Simple Task(状态压缩dp)
题目描述: A Simple Task time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
随机推荐
- zookeeper3.5.5 centos7 完全分布式 搭建随记
zookeeper3.5.5 centos7 完全分布式 搭建随记 这里是当初在三个ECS节点上搭建hadoop+zookeeper+hbase+solr的主要步骤,文章内容未经过润色,请参考的同学搭 ...
- [NOI Online #2 提高组]涂色游戏 题解
题目描述 你有 1020 个格子,它们从 0 开始编号,初始时所有格子都还未染色,现在你按如下规则对它们染色: 编号是 p1 倍数的格子(包括 0号格子,下同)染成红色. 编号是 p2 倍数的格子染成 ...
- 利用docker部署elk交换机日志分析
今天我们来聊一下利用docker部署elk日志分析系统,这里解析一下elk是啥东西.elk分别是Elasticsearch,Logstash和Kibana的首字母缩写. Elasticsearch是一 ...
- python 输出日志到文件和控制台
import logging # 第一步,创建一个logger logger = logging.getLogger() logger.setLevel(logging.INFO) # Log等级总开 ...
- HDFS客户端环境准备
一.下载Hadoop jar包至非中文路径 下载链接:https://hadoop.apache.org/releases.html 解压至非中文路径 二.配置Hadoop环境变量 配置HADOOP_ ...
- Scala 基础(九):Scala 函数式编程(一)基础(一)概念、定义、调用机制
1 概念的说明 1)在scala中,方法和函数几乎可以等同(比如他们的定义.使用.运行机制都一样的),只是函数的使用方式更加的灵活多样. 2)函数式编程是从编程方式(范式)的角度来谈的,可以这样理解: ...
- java 面向对象(八):面向对象的特征一:封装性
面向对象的特征一:封装与隐藏1.为什么要引入封装性?我们程序设计追求“高内聚,低耦合”.高内聚 :类的内部数据操作细节自己完成,不允许外部干涉:低耦合 :仅对外暴露少量的方法用于使用. 隐藏对象内部的 ...
- 数据可视化之 图表篇(五) PowerBI图表不够炫酷?来看看这个
现在这个大数据时代,每时每刻.各行各业都在产生多种多样的海量数据,如何简单高效的来理解.挖掘这些数据,发现背后的见解就非常重要. 本文介绍这个图表就可以帮你快速发现海量数据背后的见解,微软研究院打造的 ...
- 谈谈JVM(基础模型)
一,基本概念 JVM是可运行Java代码的假想计算机 ,包括一套字节码指令集.一组寄存器.一个栈. 一个垃圾回收,堆 和 一个存储方法域. JVM 是运行在操作系统之上的,它与硬件没 ...
- bzoj1673[Usaco2005 Dec]Scales 天平*
bzoj1673[Usaco2005 Dec]Scales 天平 题意: n个砝码,每个砝码重量大于前两个砝码质量和,天平承重为c,求天平上最多可放多种的砝码.n≤1000,c≤2^30. 题解: 斐 ...