在机器学习中,我们通常将原始数据按照比例分割为“测试集”和“训练集”,从 sklearn.model_selection 中调用train_test_split 函数

简单用法如下:

X_train,X_test, y_train, y_test =sklearn.model_selection.train_test_split(train_data,train_target,test_size=0.4, random_state=0,stratify=y_train)

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

  • 随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。

stratify是为了保持split前类的分布。比如有100个数据,80个属于A类,20个属于B类。如果train_test_split(... test_size=0.25, stratify = y_all), 那么split之后数据如下:

training: 75个数据,其中60个属于A类,15个属于B类。

testing: 25个数据,其中20个属于A类,5个属于B类。

用了stratify参数,training集和testing集的类的比例是 A:B= 4:1,等同于split前的比例(80:20)。通常在这种类分布不平衡的情况下会用到stratify。

将stratify=X就是按照X中的比例分配

将stratify=y就是按照y中的比例分配

整体总结起来各个参数的设置及其类型如下:

主要参数说明:

*arrays:可以是列表、numpy数组、scipy稀疏矩阵或pandas的数据框

test_size:可以为浮点、整数或None,默认为None

①若为浮点时,表示测试集占总样本的百分比

②若为整数时,表示测试样本样本数

③若为None时,test size自动设置成0.25

train_size:可以为浮点、整数或None,默认为None

①若为浮点时,表示训练集占总样本的百分比

②若为整数时,表示训练样本的样本数

③若为None时,train_size自动被设置成0.75

random_state:可以为整数、RandomState实例或None,默认为None

①若为None时,每次生成的数据都是随机,可能不一样

②若为整数时,每次生成的数据都相同

stratify:可以为类似数组或None

①若为None时,划分出来的测试集或训练集中,其类标签的比例也是随机的

②若不为None时,划分出来的测试集或训练集中,其类标签的比例同输入的数组中类标签的比例相同,可以用于处理不均衡的数据集

通过简单栗子看看各个参数的作用:

举例如下:

通过简单例子看看各个参数的作用:

①test_size决定划分测试、训练集比例

②random_state不同值获取到不同的数据集

设置random_state=0再运行一次,结果同上述相同

设置random_state=None运行两次,发现两次的结果不同

③设置stratify参数,可以处理数据不平衡问题

thanks

深度学习 | sklearn的train_test_split()各函数参数含义解释(超级全)的更多相关文章

  1. sklearn的train_test_split()各函数参数含义解释(非常全)

    sklearn之train_test_split()函数各参数含义(非常全) 在机器学习中,我们通常将原始数据按照比例分割为“测试集”和“训练集”,从 sklearn.model_selection ...

  2. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  3. Python学习札记(十二) Function3 函数参数一

    参考:函数参数 Note 1.Python的函数定义非常简单,但灵活度却非常大.除了正常定义的必选参数外,还可以使用默认参数.可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以 ...

  4. python学习二十四天函数参数之默认参数

    函数参数就是向函数传递参数,可以传递一个,可以是更多个,有的参数有值,有的没有,函数可以设置默认参数,默认参数必须放参数最后面. 1,不传递参数,设置默认参数 def hello(a,b,c='123 ...

  5. 深度学习中 epoch,[batch size], iterations概念解释

    one epoch:所有的训练样本完成一次Forword运算以及一次BP运算 batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学习每一次参数的更新所需要损失函数 ...

  6. 深度学习(四) softmax函数

    softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...

  7. Angularjs中link函数参数含义小节

    restrictE: 表示该directive仅能以element方式使用,即:<my-dialog></my-dialog>A: 表示该directive仅能以attribu ...

  8. 调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数

    Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系 ...

  9. 医学图像 | 使用深度学习实现乳腺癌分类(附python演练)

    乳腺癌是全球第二常见的女性癌症.2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%. 当乳腺细胞生长失控时,乳腺癌就开始了.这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到 ...

随机推荐

  1. 从Python开始学编程|PDF百度网盘免费下载|Python新手入门

    百度网盘免费下载:从Python开始学编程|附PDF免费下载 提取码:7nkf 豆瓣评分: 本书封面: 读者评论: 内容简介  · · · · · · 改编自Vamei博客的<Python快速教 ...

  2. Windows下使用图形化mount挂载磁盘到文件夹

    Windows上也有类似于Linux上的mount命令,至于mount是什么: mount是Linux下的一个命令,它可以将分区挂接到Linux的一个文件夹下,从而将分区和该目录联系起来,因此我们只要 ...

  3. jieba.lcut方法

    jieba库的作用就是对中文文章进行分词,提取中文文章中的词语 cut(字符串, cut_all,HMM) 字符串是要进行分词的字符串对象 cut_all参数为真表示采用全模式分词,为假表示采用精确模 ...

  4. PHP Cookie是什么

    PHP Cookie cookie 常用于识别用户. Cookie 是什么? cookie 常用于识别用户.cookie 是一种服务器留在用户计算机上的小文件.每当同一台计算机通过浏览器请求页面时,这 ...

  5. PHP date_interval_format() 函数

    ------------恢复内容开始------------ 计算两个日期间的间隔,然后格式化时间间隔: 实例 <?php $date1=date_create("2013-01-01 ...

  6. 4.23 子集 分数规划 二分 贪心 set 单峰函数 三分

    思维题. 显然考虑爆搜.然后考虑n^2能做不能. 容易想到枚举中间的数字mid 然后往mid两边加数字 使其整个集合权值最大. 这里有一个比较显然的贪心就不再赘述了. 可以发现这样做对于集合是奇数的时 ...

  7. ZR 提高十连 DAY 4

    哇 这题目怎么一次比一次毒瘤 当然这次还好 有会做的题目. T1 一眼看上去 毒瘤!再看一眼 我真不想看了 扔了. T2 哇感觉能写 哇这不是 随便都有40分了么 二分?优化一下65到手了.然后剩下的 ...

  8. electron-react-umi模板

    electron-react-umi-tpl github English Version 更新日志: 2020-06-08 添加全量更新功能 2020-06-29 添加远程增量更新功能,无需下载包来 ...

  9. 使用javaScript 取cookie时需要注意的

    function getCookie(name) { var cookies = window.top.document.cookie.split('; ');//分号后面有个空格 for (var ...

  10. 网络安全传输系统-sprint2线程池技术优化

    part1:线程池工作原理 为满足多客户端可同时登陆的要求,服务器端必须实现并发工作方式.当服务器主进程持续等待客户端连接时,每连接上一个客户端都需一个单独的进程或线程处理客户端的任务.但考虑到多进程 ...