0x00 向量


向量 ( vector ) 是一种兼具大小 ( magnitude ) 和方向的量。

0x01 几何表示


几何方法中用一条有向线段来表示一个向量,其中,线段长度代表向量的模,箭头的指向代表向量的方向。

改变向量的位置不会改变其大小和方向,所以向量与其位置无关。当我们说两个向量相等,当且仅当它们的长度相等且方向相同。

0x02 数学表示


数学中使用坐标系来描述向量,通过平移操作将向量的尾部移动到原点,就可以通过坐标来确定该向量。

每当我们根据坐标来确定一个向量时,其对应的坐标总是相对于某一参考系而言的。

标量和向量都可以用坐标 (x, y, z) 来表示。但它们的意义截然不同:点仅表示位置,而向量表示大小与方向。

0x03 向量的基本运算


设有向量 \(u = (u_x, u_y, y_z)\) 和 \(v = (v_x, v_y, v_z)\):

  1. 两个向量相等,当且仅当它们对应的分量分别相等。
  2. 向量加法:\(u + v = (u_x + v_x, u_y + v_y, u_z + v_z)\)。
  3. 标量乘法 ( scalar multiplication ),设 k 是一个标量,则 \(ku = (ku_x, ku_y, ku_z)\)。
  4. 向量减法:\(u - v = (u_x - v_x, u_y - v_y, u_z - v_z)\)。
  5. \((0, 0, 0)\) 称为零向量 (zero-vector),可简记为 0。

0x04 向量的长度和单位向量


向量的大小(即模)的几何意义是对应有向线段的擦汗高难度,用双竖线表示(如 \(||u||\))。

代数计算方法:\(\|u\| = \sqrt{x^2 + y^2 + z^2}\)

规范化 (normalizing) :

将向量的长度变为单位长度,将向量的每个分量分别除以该向量的模:\(\hat{u} = \frac{u}{\|u\|} = (\frac{x}{\|u\|},\frac{y}{\|u\|}\frac{z}{\|u\|})\)。

规范化又称标准化、归一化、正常化、规格化、正态化、单位化……不必拘泥于名词译法。

0x05 点积


点积 ( dot product ,也称为数量积或内积 ) 是一种计算结果为标量值的向量乘法运算,因此也称标量积 ( scalar product )。设 \(u = (u_x, u_y, y_z)\) 和 \(v = (v_x, v_y, v_z)\),则点积的定义为:\(u \cdot v = u_xv_x + u_yv_y + u_zv_z\)

点积的几何意义是:\(u \cdot v = \|u\| \|v\| \cos{\theta}\)

点积的一些几何性质:

  1. \(u \cdot v = 0\),那么 \(u \perp v\) (即两个向量正交)。
  2. \(u \cdot v \gt 0\),那么两向量之间的夹角 θ 小于 90°(即两向量间的夹角为一锐角)。
  3. \(u \cdot v \lt 0\),那么两向量之间的夹角 θ 大于 90°(即两向量间的夹角为一钝角)。

正交 (orthogonal)与垂直(perendicular)为同义词。

0x06 正交


给出向量 v 和单位向量 n,用点积公式求出 p。

因为 n 是单位向量,所以:\(p = (\|v\| \cos{\theta}) n = (v \cdot n)n\)。我们称 p 为向量 v 落在向量 n 上的正交投影(orhogonal projection),通常将它表示为:\(p = proj_n(v)\)。

如果 n 不具有单位长度,就先对它进行规划法处理,使之成为单位向量。可以得到更一般的投影公式:\(p = proj_n(v) = (v \cdot \frac{n}{\|n\|}) \frac{n}{\|n\|} = \frac{(v \cdot n)}{\|n\|^2}n\)。

如果向量集合中每个向量都是相互正交且皆具单位长度,我们就称此集合是规范正交(orhonormal)的。

有一种常见的工作,将非规范正交集正交化。

1.2D 正交化处理

假设有一个向量集合 \(\{v_0, v_1\}\),现在要将它正交化为 \(\{w_0, w_1\}\)。首先设 \(w_0=v_0\),通过使 \(v_1\) 减去它在 \(w_0\) 上的分量来令它正交于 \(w_0\):\(w_1 = v_1 - proj_{w_0}(v_1)\)。

此时我们就得到一个元素相互正交的向量集合 \(\{w_0, w_1\}\);最后将其中的元素规范化为单位向量即可。

2.3D 正交化处理

与 2D 的处理方式类似,只不过要多一些步骤。

3.格拉姆-施密特正交化(Gram-Schmidt Orthogonalization)

对于具有 n 个向量的一般集合 \(\{ v_0, ..., v_{n-1}\}\) 来说,基本步骤:

设 \(w_0 = v_0\),对于 \(1 \le i \le n - 1\),令 \(w_i=v_i - \sum_{j=0}^{i-1}proj_{w_j}(v_i)\)。

规范化步骤:令 \(w_i=\frac{w_i}{\|w_i\|}\)

将给定集合内的向量 \(v_i\) 添加到规范正交集中时,需要令 \(v_i\) 减去它在现有规范正交集中的其他向量方向上的分量,这样可以确保新加入规范正交集的向量与该集合中的其他向量相互正交。

0x07 叉积


假设 3D 向量 u 与 v 的叉积为 w,则 w 与向量 u、v 彼此正交。

\(w = u \times v = (u_yv_z - u_zv_y, u_zv_x - u_xv_z, u_xv_y - u_yv_x)\)

通过叉积来进行正交化

流程如下:

  1. 令 \(w_0 = \frac{v_0}{\|v_0\|}\)。
  2. 令 \(w_2 = \frac{w_0 \times v_1}{\|w_0 \times v_1\|}\)。
  3. 令 \(w_1 = w_2 \times w_0\)。

此时,向量集 \(\{ w_0, w_1, w_2 \}\) 是规范正交的。

DX12龙书 01 - 向量在几何学和数学中的表示以及运算定义的更多相关文章

  1. DX12龙书第6章习题

    1. { { , DXGI_FORMAT_R32G32B32_FLOAT, , , D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, }, { , DXGI_FO ...

  2. DX12龙书 02 - DirectXMath 库中与向量有关的类和函数

    0x00 需要用到的头文件 #include <DirectXMath> #include <DirectXPackedVector.h> using namespace Di ...

  3. DX12龙书 00 - 环境配置:通过 Visual Studio 2019 运行示例项目

    0x00 安装 Visual Studio 2019 安装 Visual Studio 2019 以及相关组件. 注:安装组件时带的 Windows 10 SDK 可以在 Individual com ...

  4. 正则表达式引擎的构建——基于编译原理DFA(龙书第三章)——3 计算4个函数

    整个引擎代码在github上,地址为:https://github.com/sun2043430/RegularExpression_Engine.git nullable, firstpos, la ...

  5. [HLSL]HLSL 入门参考 (dx11龙书附录B译文)

    原文:[HLSL]HLSL 入门参考 (dx11龙书附录B译文) HLSL 高级着色语言 参考文档 龙书DirectX12现已推出中文版,其附录B的高级着色器语言参考的翻译质量比本文更高,有条件的读者 ...

  6. 龙书(Dragon book) +鲸书(Whale book)+虎书(Tiger book)

    1.龙书(Dragon book)书名是Compilers: Principles,Techniques,and Tools作者是:Alfred V.Aho,Ravi Sethi,Jeffrey D. ...

  7. 编译原理 #03# 龙书中缀转后缀JS实现版

    // 来自龙书第2章2.5小节-简单表达式的翻译器 笔记 既然是语法制导翻译(Syntax-directed translation),那么最重要的东西当然是描述该语言语法的文法,以下为中缀表达式文法 ...

  8. Directx11学习笔记【八】 龙书D3DApp的实现

    原文:Directx11学习笔记[八] 龙书D3DApp的实现 directx11龙书中的初始化程序D3DApp跟我们上次写的初始化程序大体一致,只是包含了计时器的内容,而且使用了深度模板缓冲. D3 ...

  9. 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)

    向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...

随机推荐

  1. Lua 调用的 C 函数保存 state 的两种方式: Storing State in C Functions 笔记

    http://yanbin.is-programmer.com/posts/94214.html Registery的Key 1. 整数Key用于Lua的引用机制,所以不要使用整数作为Key 2. 通 ...

  2. AcWing 285. 没有上司的舞会(树形dp入门)

    Ural大学有N名职员,编号为1~N. 他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司. 每个职员有一个快乐指数,用整数 HiHi 给出,其中 1≤i≤N1≤i≤N. 现在要召开一场周年 ...

  3. 2申请高德地图key 初始化地图

    https://console.amap.com/dev/key/app vue-amap-基于-vue-2x-与高德的地图组件 https://elemefe.github.io/vue-amap/ ...

  4. 跟着兄弟连系统学习Linux-【day03】

    day03-20200529 p10.学习注意事项         linux严格区分大小写(与python有点像)         Linux中所有内容都是通过文件形式保存,通过命令执行设置参数,写 ...

  5. js判断一个字符串中出现次数最多的字符及次数

    最近面试总是刷到这个题,然后第一次的话思路很乱,这个是我个人思路 for循环里两个 if 判断还可以优化 var maxLength = 0; var maxStr = ''; var count = ...

  6. Agumaster页面样式就绪

  7. 20190923-13Linux企业真实面试题 000 021

    百度&考满分 问题:Linux常用命令 参考答案:find.df.tar.ps.top.netstat等.(尽量说一些高级命令) 瓜子二手车 问题:Linux查看内存.磁盘存储.io 读写.端 ...

  8. oracle之三手工不完全恢复

    手工不完全恢复 4.1 不完全恢复的特点: 1)让整个database 回到过去某个时间点,不能避免数据丢失. 2)想跳过坏日志而继续恢复所有其他工作是不可能的,前滚没有这个功能(考点). 3)必须以 ...

  9. python链表从尾到头的顺序返回一个ArrayList

    思路:获取链表的值,添加入列表中,反转列表即可获得ArrayList # -*- coding:utf-8 -*- # class ListNode: # def __init__(self, x): ...

  10. k8s重要概念及部署k8s集群(一)

    k8s介绍 Kubernetes(k8s)是Google开源的容器集群管理系统(谷歌内部:Borg).在Docker技术的基础上,为容器化的应用提供部署运行.资源调度.服务发现和动态伸缩等一系列完整功 ...