题目大意

给你一个有向图,求出图中环的平均值的最小值

环的平均值定义:环中所有的边权和/环中点数量

思路

看到使平均值最大或最小,可以考虑分数规划

分数规划用于解决一些要让平均值最大或最小的问题

具体就是二分答案\(K\)

\(\frac{x_1+x_2+x_3+\dots+x_n}{n}/ge k\Leftrightarrow (x_1-k)+(x_2-k)+(x_3-k)+\dots+(x_n-k)\ge 0\)

很明显,这题完全满足这个分数规划的性质。

故我们枚举一个\(k\),把每条边的边权减去\(k\),再用\(SPFA\)判负环就可以了

具体细节见代码

#include <bits/stdc++.h>
using namespace std ;
const int MAXN = 10000 + 5 ;
struct Node {
int next , to ;
double w ;
} edge[ MAXN ] ;
int head[ MAXN ] , cnt ;
int n , m ;
double d[ MAXN ] ;
bool vis[ MAXN ] ;
inline int read () {
int tot = 0 , f = 1 ; char c = getchar () ;
while ( c < '0' || c > '9' ) { if ( c == '-' ) f = -1 ; c = getchar () ; }
while ( c >= '0' && c <= '9' ) { tot = tot * 10 + c - '0' ; c = getchar () ; }
return tot * f ;
}
inline void add ( int x , int y , double z ) {
edge[ ++ cnt ].next = head[ x ] ;
edge[ cnt ].to = y ;
edge[ cnt ].w = z ;
head[ x ] = cnt ;
}
inline bool spfa ( int u , double t ) {
vis[ u ] = 1 ;
for ( int i = head[ u ] ; i ; i = edge[ i ].next ) {
int v = edge[ i ].to ;
if ( d[ u ] + edge[ i ].w - t < d[ v ] ) {
d[ v ] = d[ u ] + edge[ i ].w - t ;
if ( vis[ v ] || spfa ( v , t ) ) return 1 ; //判负环
}
}
vis[ u ] = 0 ;
return 0 ;
}
inline bool check ( double t ) {
for ( int i = 1 ; i <= n ; i ++ ) d[ i ] = 0 ;
memset ( vis , 0 , sizeof ( vis ) ) ;
for ( int i = 1 ; i <= n ; i ++ ) if ( spfa ( i , t ) ) return 1 ; //每个点都要作为起点来判一遍
return 0 ;
}
signed main () {
n = read () ; m = read () ;
for ( int i = 1 ; i <= m ; i ++ ) {
int x = read () , y = read () ;
double z ; cin >> z ;
add ( x , y , z ) ;
}
double l = -1e7 , r = 1e7 ;
while ( r - l > 1e-12 ) { // 二分答案
double mid = ( l + r ) / 2 ;
if ( check ( mid ) ) r = mid ;
else l = mid ;
}
printf ( "%.8lf\n" , r ) ;
return 0 ;
}

[HNOI2009]最小圈 题解的更多相关文章

  1. BZOJ1486:[HNOI2009]最小圈——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1486 https://www.luogu.org/problemnew/show/P3199 题面 ...

  2. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  3. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  4. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  5. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  6. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  7. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  8. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  9. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

随机推荐

  1. Ethical Hacking - NETWORK PENETRATION TESTING(7)

    Gaining Access to encrypted networks Three main encryption types: 1. WEP 2.WPA 3.WPA2 WEP Cracking W ...

  2. 设计模式:proxy模式

    目的:为其他对象提供一种代理以控制对这个对象的访问 理解:尽管Decorator的实现部分与代理相似,但Decorator的目的不一样.Decorator为对象添加一个或多个功能,而代理则控制对对象的 ...

  3. 好用的npm模块记录

    标签: node node盛行的今天,前端开发已经离不开npm模块的使用,大名鼎鼎的如gulp,webpack等,此处不多说,除了它们有那么几个常用的npm模块是我喜欢并依赖它的,下面就是我平时工作中 ...

  4. Spark入门(第1讲)

    一.Spark是什么 引用官方文档的一句话 Apache Spark is a unified analytics engine for large-scale data processing. Ap ...

  5. vue组件库用markdown生成文档

    前言: 开发vue组件库需要提供组件的使用文档,最好是有渲染到浏览器的demo实例,既能操作又能查看源代码.markdown作为常用的文档编写载体,如果能在里面直接写vue组件,同时编写使用说明就再好 ...

  6. spring tx——TransactionManger

    TransactionDefinition--事务定义 定义事务属性,包括传播级别.隔离级别.名称.超时.只读等 TransactionStatus--事务状态 事务状态,包含事务对象(jdbc为Da ...

  7. 使用ASP.NET实现定时计划任务,不依靠windows服务

    我们怎样才能在服务器上使用asp.net定时执行任务而不需要安装windows service?我们经常需要运行一些维护性的任务或者像发送提醒邮件给用户这样的定时任务.这些仅仅通过使用Windows ...

  8. python3 httpConnection——post请求

    #coding=utf-8 import http.clientimport urllib.parse #与服务器建立链接url = 'code.ali.cn:80' conn = http.clie ...

  9. Dom运用1

    1.简单计算器 <!-- 第一个数--> <input type="text"> <!-- 符号复选框--> <select name=& ...

  10. Python之生成器、迭代器

    生成器 生成器类似返回值为数组的一个函数,这个函数可以接受参数,可被调用,但只能产生一个值,所以大大节省内存. 生成器表达式的语法非常简单,只需要将列表推导式的中括号改成小括号就可以了 [x+x fo ...