HDU 4675 GCD of Sequence(莫比乌斯反演 + 打表注意事项)题解
题意:
给出\(M\)和\(a数组\),询问每一个\(d\in[1,M]\),有多少组数组满足:正好修改\(k\)个\(a\)数组里的数使得和原来不同,并且要\(\leq M\),并且\(gcd(a_1,a_2,\dots,a_n)=d\)。
思路:
对于每一个\(d\),即求\(f(d)\):修改\(k\)个后\(gcd(a_1,a_2,\dots,a_n)=d\)的对数。
那么假设\(F(d)\):修改\(k\)个后\(gcd(a_1,a_2,\dots,a_n)\)是\(d\)倍数的对数。故:
\]
打表求\(F(d)\)即可。假设\(num[d]\)为\(a\)中是\(d\)倍数的数量,则
\]
然后\(nlogn\)打出\(num\)数组即可。
思考:
这样的打表法是\(nlogn\)的:
证明 O(n/1+n/2+…+n/n)=O(nlogn)
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
num[a[i]]++;
}
for(int i = 1; i <= m; i++){
for(int j = i + i; j <= m; j += i){
num[i] += num[j];
}
}
这样是\(n\sqrt n\)的
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
for(int j = 1; j <= sqrt(a[i]); j++){
if(a[i] % j == 0){
num[j]++;
if(j * j != a[i]) num[a[i] / j]++;
}
}
}
代码:
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1000000007;
using namespace std;
int mu[maxn], vis[maxn];
int prime[maxn], cnt;
ll fac[maxn], inv[maxn];
ll ppow(ll a, ll b){
ll ret = 1;
while(b){
if(b & 1) ret = ret * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ret;
}
void init(int n){
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
fac[0] = inv[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % MOD;
inv[n] = ppow(fac[n], MOD - 2);
for(int i = n - 1; i >= 1; i--) inv[i] = (i + 1LL) * inv[i + 1] % MOD;
}
ll C(int n, int m){
return fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}
int num[maxn], a[maxn];
//num[i]:是i的倍数的个数
ll F[maxn], f[maxn];
int main(){
init(3e5);
int n, m, k;
while(~scanf("%d%d%d", &n, &m, &k)){
memset(num, 0, sizeof(num));
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
num[a[i]]++;
}
for(int i = 1; i <= m; i++){
for(int j = i + i; j <= m; j += i){
num[i] += num[j];
}
}
for(int i = 1; i <= m; i++){
int no = n - num[i];
if(no > k) F[i] = 0;
else{
F[i] = ppow(m / i, no) * C(num[i], k - no) % MOD * ppow(m / i - 1, k - no) % MOD;
}
}
for(int i = 1; i <= m; i++){
f[i] = 0;
for(int j = i; j <= m; j += i){
f[i] += mu[j / i] * F[j];
f[i] %= MOD;
}
printf("%lld%c", (f[i] % MOD + MOD) % MOD, i == m? '\n' : ' ');
}
}
return 0;
}
HDU 4675 GCD of Sequence(莫比乌斯反演 + 打表注意事项)题解的更多相关文章
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
- HDU 4675 GCD of Sequence (2013多校7 1010题 数学题)
GCD of Sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)T ...
- HDU 4675 GCD of Sequence(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给出n,m,K,一个长度为n的数列A(1<=A[i]<=m).对于d(1< ...
- hdu 4675 GCD of Sequence
数学题! 从M到1计算,在计算i的时候,算出原序列是i的倍数的个数cnt: 也就是将cnt个数中的cnt-(n-k)个数变掉,n-cnt个数变为i的倍数. 且i的倍数为t=m/i; 则符合的数为:c[ ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
- HDU 2841 Visible Trees(莫比乌斯反演)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2841 题意:给n*m的矩阵(从(1,1)开始编号)格子,每个格子有一棵树,人站在(0,0)的位置,求可 ...
- hdu4675 GCD of Sequence 莫比乌斯+组合数学
/** 题目:hdu4675 GCD of Sequence 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4675 题意:给定n个数的a数组,以及m,k: ...
- bnu——GCD SUM (莫比乌斯反演)
题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h& ...
随机推荐
- linux下安装nacos
一.安装 1.下载安装包: https://github.com/alibaba/nacos/releases 2.解压 : tar -xzvf nacos-server-1.2.1.tar.gz 3 ...
- Java程序入门
编写Java源程序 在d:\day01 目录下新建文本文件,完整的文件名修改为HelloWorld.java ,其中文件名为HelloWorld ,后缀名必须为.java . 用记事本打开 在文件中键 ...
- 使用存储过程在mysql中批量插入数据
一.在mysql数据库中创建一张表test DROP TABLE IF EXISTS `test`; CREATE TABLE `test` ( `id` INT (11), `name` VARCH ...
- 【转】使用ssh-keygen和ssh-copy-id三步实现SSH无密码登录
[原]http://blog.chinaunix.net/uid-26284395-id-2949145.html ssh-keygen 产生公钥与私钥对. ssh-copy-id 将本机的公钥复制 ...
- Linux 技巧:让进程在后台运行更可靠的几种方法
Linux 技巧:让进程在后台运行更可靠的几种方法 https://www.ibm.com/developerworks/cn/linux/l-cn-nohup/index.html 我们经常会碰到这 ...
- c 越界 数组越界
int main(int argc, char* argv[]){ int i = 0; int arr[3] = {0}; for(; i<=3; i++){ arr[i] = 0; prin ...
- 线上一次大量 CLOSE_WAIT 复盘
https://mp.weixin.qq.com/s/PfM3hEsDa3CMLbbKqis-og 线上一次大量 CLOSE_WAIT 复盘 原创 ms2008 poslua 2019-07-05 最 ...
- python 11 模块
模块 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较 ...
- LOJ10021 Addition Chains
题目描述 原题来自:ZOJ 1937 已知一个数列 A0,A1,A2,A3,...,Am(其中A0=1,Am=n,A0<A1<A2<A3<...<Am ).对于每个 k, ...
- MySQL下载地址与Centos7安装MySQL以及启动问题排查
目录 一.MySQL国内镜像下载 二.国内镜像相关站点 三.Centos7安装MySQL5.7 1. 下载并解压至/usr/local 2. 配置信息 3. 用户及用户组管理(提高安全) 4. 初始化 ...