由于木块可以由一些木块的消除,使两边相同颜色的合并

所以我们设定一个归并方式,即每个区间记录一下右边的延展性。

(等于左边找右边)

设 \(f[i][j][k]\) 为\([i, j]\) 区间,右侧有 \(k\) 个颜色 \(= a[j]\) 的。

考虑两种转移方式。

第一种操作:直接搞掉右边的。

设 \(i <= p <= j\),且 \([p, j]\) 区间内的颜色都是 \(a[j]\)。

那么把右边的搞掉即可,

\(f[i][p - 1][0] + (k + j - p + 1) ^ 2\)

第二种操作:考虑把 \([q + 1, p - 1]\) 这段搞掉,然后左边和右边的合并。

即找一个位置 \(i <= q < p - 1\); 且满足 \(a[q] = a[j]\)

\(f[q + 1][p - 1][0] + f[i][q][k + j - p + 1]\)

一个剪枝,保证 \(a[q] \not= a[q + 1]\),否则肯定不优。

值得注意的是边界问题

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 205;
int n, a[N], f[N][N][N];
int dp(int l, int r, int k) {
if (f[l][r][k] != -1) return f[l][r][k];
int &v = f[l][r][k];
if (l == r) return v = (k + 1) * (k + 1);
int p = r;
while (p - 1 >= l && a[p - 1] == a[r]) p--;
v = (p == l ? 0 : dp(l, p - 1, 0)) + (k + r - p + 1) * (k + r - p + 1);
for (int q = l; q < p - 1; q++) {
if (a[q] == a[r] && a[q] != a[q + 1])
v = max(v, dp(q + 1, p - 1, 0) + dp(l, q, k + r - p + 1));
}
return v;
}
int main() {
int T; scanf("%d", &T);
for (int t = 1; t <= T; t++) {
memset(f, -1, sizeof f);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", a + i);
printf("Case %d: %d\n", t, dp(1, n, 0));
}
return 0;
}

AcWing 322. 消木块的更多相关文章

  1. AcWing 227. 小部件厂 (高斯消元)打卡

    题目:https://www.acwing.com/problem/content/description/229/ 题意:有很多个零件,每个零件的生产时间都在3-9天之间,现在只知道每个工人的生产部 ...

  2. AcWing 209. 装备购买 (高斯消元线性空间)打卡

    脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...

  3. AcWing 208. 开关问题 (高斯消元+状压)打卡

    有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. 你的目 ...

  4. AcWing 207. 球形空间产生器 (高斯消元)打卡

    有一个球形空间产生器能够在n维空间中产生一个坚硬的球体. 现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. ...

  5. Acwing 883高斯消元法的运用

    Acwing 883高斯消元法的运用 解线性方程组 Acwing 883 输入一个包含 n 个方程 n 个未知数的线性方程组. 方程组中的系数为实数. 求解这个方程组. 下图为一个包含 m 个方程 n ...

  6. 快消品迎来B2B元年,行业将如何变革?

    一年接近尾声,又到了年终总结的时候,宴会厅里传来各种激情澎湃的演讲,有的行业遍地开花.欢声笑语不绝于耳:有的行业却没能迎来"昨夜东风",只能嗟叹"不堪回首".2 ...

  7. PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱?

    PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱? PIC10F单片机芯片解密型号: PIC10F200解密 | PIC10F202解密 | PIC10 ...

  8. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  9. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

随机推荐

  1. nginx&http 第三章 ngx 事件event epoll 处理

    1. epoll模块命令集 ngx_epoll_commands  epoll模块上下文 ngx_epoll_module_ctx  epoll模块配置 ngx_epoll_module static ...

  2. linux kernel 的 procfs sysfs 对查问题的帮助

    遇到进程卡死,没有gdb 符号表:只能strace 跟踪处理分析 排查过程: 1.ps -aux 查看卡死进程pid 2.strace -T -tt -e trace=all -p 查看卡死进程系统调 ...

  3. 使用GitHub API上传文件及GitHub做图床

    本文介绍GitHub API基础及上传文件到仓库API,并应用API将GitHub作为图床 GitHub API官方页面 GitHub API版本 当前版本为v3,官方推荐在请求头中显示添加版本标识. ...

  4. PID算法的C语言实现

    1.根据我控制算法类文章中关于PID的理论的一些描述,同时也根据网络上一些其他的PID文章,以及自己最近一个项目的实践后,总结了几套基于C语言的PID算法,由于网络中很少有人进行分享完整的PID算法实 ...

  5. [LeetCode题解]143. 重排链表 | 快慢指针 + 反转

    解题思路 找到右边链表,再反转右边链表,然后按左.右逐一合并 代码 /** * Definition for singly-linked list. * public class ListNode { ...

  6. Spark3.0.1各种集群模式搭建

    对于spark前来围观的小伙伴应该都有所了解,也是现在比较流行的计算框架,基本上是有点规模的公司标配,所以如果有时间也可以补一下短板. 简单来说Spark作为准实时大数据计算引擎,Spark的运行需要 ...

  7. 一次看完28个关于ES的性能调优技巧,很赞,值得收藏!

    因为总是看到很多同学在说Elasticsearch性能不够好.集群不够稳定,询问关于Elasticsearch的调优,但是每次都是一个个点的单独讲,很多时候都是case by case的解答,本文简单 ...

  8. Redis 基础设计结构之四 set(集合)

    Redis 有 5 种基础数据结构,分别为:string (字符串).list (列表).set (集合).hash (哈希) 和 zset (有序集合). 今天来说一下set(集合)这种存储结构,s ...

  9. Codeforces Round #667 (Div. 3) B、C、D、E 题解

    抱歉B.C题咕了这么久 B. Minimum Product #枚举 #贪心 题目链接 题意 给定四个整数\(a, b, x, y\),其中\(a\geq x, b\geq y\),你可以执行不超过\ ...

  10. 牛客编程巅峰赛S2第4场

    牛客编程巅峰赛S2第4场 牛牛摆玩偶 题目描述 牛牛有\(n(2 \leq n \leq 10^5)(2≤n≤105)\)个玩偶,牛牛打算把这n个玩偶摆在桌子上,桌子的形状的长条形的,可以看做一维数轴 ...