【论文笔记】Self-Supervised GAN :辅助性旋转损失的自监督生成式对抗网络
这是CVPR2019上UCLA和google brain的一个工作。模型非常简单,利用辅助损失解决GAN不稳定问题;用旋转分类将辅助分类器对label的需求去掉,使图片可以直接对自己标注类别。
Self-Supervised GANs via Auxiliary Rotation Loss
论文地址:https://arxiv.org/abs/1811.11212
GITHUB代码:https://github.com/vandit15/Self-Supervised-Gans-Pytorch
论文指出,GAN模型的重要问题是不稳定(instability, divergence, cyclic behavior, or model collapse)。判别器通常学习了一个分布的特征,但后来的样本往往是不符合这个分布的,如果放任不管会造成模型欠拟合。为了提高模型的稳定性,研究人员又提出了CGAN,生成器和判别器通过使用有标签的数据来记住之前的数据分布。但是,CGAN的主要不足在于该模型依赖于标注好的数据。即使存在标注好的数据,这些数据往往也是sparse,并且仅仅只包含了一小部分高层抽象信息。
作者举了两个例子来说明当前模型的问题(判别器的遗忘问题),在下图中,蓝色虚线是当前的GAN,由于对模型分布记忆出现混乱,导致准确率下降。

在下图中,左侧表示GAN在每1K数据后换一次数据分布。可以看到数据分布换了以后,原始的GAN会存在较大的误差,几乎又回到了原始未学习的状态。

于是,作者提出了self-supervised GAN (SS-GAN),通过加入自监督能够有效的避免遗忘带来的不稳定。作者受到《Unsupervised Representation Learning by Predicting Image Rotations》这篇文章的启发,该方法使用的是基于图像旋转的自监督方法。该方法将几何变换定义为0,90,180,270度的图像旋转,为了让一个卷积网络能够识别图像中的旋转变换,需要理解图像中描述的对象概念。尽管这个自监督方法非常简单,但是为特征学习提供了一个强大的替代监督信号。
SS-GAN的整体架构如下图所示,具体实现:
- 第一个判别器按照以前的方法,输出 true/false 的判断结果;
- 第二个判别器倒数第二层输出,作为特征,加上线性分类器,预测旋转的类型。

作者指出,SS-GAN将对抗训练与自监督学习相结合,实现了CGAN的优势,而不需要任何标注数据。SS-GAN实现了大规模无条件 ImageNet 图像生成,这项目工作是向着高质量、无监督的自然图像合成方向迈出的重要一步。
【论文笔记】Self-Supervised GAN :辅助性旋转损失的自监督生成式对抗网络的更多相关文章
- GAN实战笔记——第七章半监督生成对抗网络(SGAN)
半监督生成对抗网络 一.SGAN简介 半监督学习(semi-supervised learning)是GAN在实际应用中最有前途的领域之一,与监督学习(数据集中的每个样本有一个标签)和无监督学习(不使 ...
- 生成式对抗网络(GAN)学习笔记
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...
- 【CV论文阅读】生成式对抗网络GAN
生成式对抗网络GAN 1. 基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...
- 学习笔记TF051:生成式对抗网络
生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型.灵感自二人博弈的零和博弈,目前最火的非监督深度学习.GAN之父,Ian J.Goo ...
- 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
[前言] 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...
- GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 学习笔记GAN001:生成式对抗网络,只需10步,从零开始到调试
生成式对抗网络(gennerative adversarial network,GAN),目前最火的非监督深度学习.一个生成网络无中生有,一个判别网络推动进化.学技术,不先着急看书看文章.先把Demo ...
随机推荐
- CCNA-Part3 - 数据链路层的趣事 - 走进交换机
在这篇文章中,会先介绍局域网及其的组件,通过交换机延伸到 TCP/IP 中数据链路层,了解数据的传输介质,以及交换机的发展历程及原理. 最后介绍数据帧的格式. 在阅读后应该了解如下的内容: 什么是局域 ...
- ceph luminous版本的安装部署
1. 前期准备 本次安装环境为: ceph1(集群命令分发管控,提供磁盘服务集群) CentOs7.5 10.160.20.28 ceph2(提供磁盘服务集群) CentOs7.5 10. ...
- day18__文件操作
一.3 种模式 r: 只读模式, r+: 读写模式,覆盖开头内容 w: 写模式,全覆盖 (如果是没有的文件则重新创建空文件) a+: 读写模式,从最开头写,覆盖开头内容 (如果是没有的 ...
- 【实践】如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统)
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安 ...
- 二.3.token认证,jwt认证,前端框架
一.token: 铺垫: 之前用的是通过最基本的用户名密码登录我的运维平台http://127.0.0.1:8000/---这种用的是form表单,但是这种对于前后端分离的不适合.前后端分离,应该通过 ...
- jQurey Select2 4.0
https://jeesite.gitee.io/front/jquery-select2/4.0/index.htm
- 初探pandas——安装和了解pandas数据结构
安装pandas 通过python pip安装pandas pip install pandas pandas数据结构 pandas常用数据结构包括:Series和DataFrame Series S ...
- 【蓝桥杯】2018年第九届蓝桥杯C/C++B组省赛——B题 等差素数列
题目 标题:等差素数列 2,3,5,7,11,13,....是素数序列. 类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列. 上边的数列公差为30,长度为6. ...
- gulp之demo
1.安装gulp cnpm install -g gulp; 2.然后还需要在当前目录安装gulp,具体不详,只知道安装了之后会在当前目录下的node_modules下多一个gulp文件夹 cnpm ...
- 「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...