planning algorithms chapter 2 :Discrete Planning

离散可行规划导论

问题定义

在离散规划中,状态是“可数”的,有限的。
离散可行规划:

  1. 非空状态空间 X
  2. 对于每个状态 x,存在一个有限的动作空间 U(x)
  3. 对于每个状态和动作空间,存在状态转移方程,产生一个新的状态
  4. 一个初始状态 xi
  5. 一个目标集 Xg

为了方便表达离散可行规划的定义,通常采用有向状态转移图来表示,图上的顶点集合表示状态空间 X,只有当两顶点之间可状态转移时,图上两顶点之间的有向边才存在。初始状态和目标集可以表示为图上特别指定的顶点。

离散规划的例子

  • 2D 网格上移动(“迷宫”)

  • 魔方拼图

图搜索算法

前向搜索算法

上图显示了通用图搜索算法模板,其中有几点需要注意:Q 内部如何排序,如何判断状态属于目标状态,如何得到计划(动作序列),如何判断该状态是否已经访问过,是否需要更新状态代价值(如在Dijkstra 和 A* 算法)

几种前向搜索算法,区别在于定义了Q 这个优先级队列内部不同的排序方式

  • 广度优先:FIFO
  • 深度优先:LIFO
  • Dijkstra :一种图单源最短路径搜索算法,一种特殊的动态规划形式
    在Dijkstra中,图上每条边附带一个代价(l(x, u) >= 0),Q 内部是按照从初始状态到达该状态的累计代价(C(x),cost-to-come)排序。cost-to-come 在搜索过程中通过DP方式来增量计算(C(x‘) = C(x) + l(x, u), 代表最优)。
    Dijkstra 可以保证一旦某个状态被访问,则该状态的 cost-to-come一定是最优的。Dijkstra 内部 Q 实现采用的 Fibonacci heap 这种数据结构,可以实现在常数时间内判断某个状态是否被访问过。
  • A-star :基于Dijkstra进行扩展,引入启发项值(G(x),cost-to-go),当G(x) = 0 时, A-star 退化成Dijkstra,Q 内部是按照从初始状态到达目标状态的预估最优代价( C(x’) + G(x‘)) 进行排序。
  • 最佳优先搜索:Q 内部是按照 cost-to-go 排序,一种贪心搜索,不保证最优,但搜索速度快。
  • 迭代加深搜索:通过不断增加深度优先搜索深度的一种搜索,将深度优先搜索转换为一种系统性搜索方式(能够访问可到达的所有状态)。
    迭代加深搜索相比 BFS 使用更少的内存,迭代加深搜索结合 A-star 的思想,形成了 IDA* 算法,在每次迭代过程中,最大深度步长为C(x’) + G(x‘)。

其他搜索算法

  • 反向搜索算法

  • 双向搜索算法


当两棵搜索树相遇时,搜索结束,返回成功。如果其中任一搜索树的优先级队列为空, 且两颗树未相遇,则搜索结束,返回失败。

搜索算法的统一视角

上述所有的搜索算法遵循以下一些共同的模式:

  1. 初始
    搜索开始时,搜索图 G(V,E)中 E为空集,V只包含初始状态
  2. 选择顶点
    从V中选择一个顶点,这通常是通过维护一个优先级队列实现
  3. 应用动作
    基于V中选择的某个顶点,应用动作后,生成一个新的状态 x = f(x0, u)
  4. 向搜索图中插入有向边
    新状态 x 如果不在 V 中,则将 x 插入到 V 中
  5. 检查解决方案
    如果只有一颗搜索树,根据搜索图 G 得到从初始状态到目标状态的路径会比较简单。如果搜索树数量大于 1 颗,复杂度会增加。
  6. 返回到步骤 2
    迭代直到找到一个解决方案。

离散最优规划

最优定长规划


\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\)

通过引入代价项Lf(xf)这一技巧,将离散可行规划中的约束转换为优化问题代价函数中的一项。

基本思想: 最优规划解决方案的子组成方案也是最优的,于是可以通过动态规划方法解决。在最优定长规划中,采用一种迭代算法,称为 值迭代,它的主要思想是在状态空间中迭代计算最优的 cost-to-go(或 cost-to-come)。Dijkstra’s algorithm 也是 值迭代的一种方式。

反向值迭代

基本思想: 在状态空间中迭代计算最优的 cost-to-go 代价值。在特殊场景下,该方法退化为 Dijkstra 方法。

符号: $ G_{k}^{ \ast} $ :F 表示最后一步,$ G_{k}^{ \ast} $ 表示从第 k 步到 最后一步(F 步)最佳计划下的累计代价

初始条件: $ G_{F}^{ \ast}\left ( x_{F} \right ) = l_{F}\left ( x_{F} \right ) $
结论:


推导过程:

值迭代过程:
$ G_{F}^{ \ast}\rightarrow G_{K}^{ \ast}\rightarrow G_{K-1}^{ \ast}\cdots G_{k}^{ \ast}\rightarrow G_{k-1}^{ \ast}\rightarrow\cdots G_{2}^{ \ast}\rightarrow G_{1}^{ \ast} $

时间复杂度: $ O\left ( K\left | X \right |\left | U \right | \right ) $

离散最优规划标准定义\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\),该时间复杂度为 $ O\left | U \right |^K $,通过引入动态规划,极大降低了复杂度。

举例:


如上图,a 列 $ G_{1}^{ \ast} $ 的值 $G_{1}^{ \ast}\left ( a \right ) $ 代表了 5 步定步长最优规划的累计代价为 6 。那么如何体现动态规划思想降低时间复杂度呢?
当计算 $ G_{4}^{ \ast} $ 的值时,只有 b 和 c 可以只经过 1 步到达 d,再经过1 步到达目标 e,因此只有\(G_{4}^{ \ast}\left ( b \right )\)、\(G_{4}^{ \ast}\left ( c \right )\)为有限值。再计算 \(G_{3}^{ \ast}\) 的值时,只有经过 b 和 c 的路径才可能经过 5 步到达 目标 e,因此缩小了考虑的范围,具体程序表现为选择到达下一顶点的最小累计代价的行为。

那么,得到了最佳cost-to-go的表,如何提取最佳计划(或路径)?
一种解决方案是为每个顶点存储最优 \(G_{n}^{ \ast}\)所对应的行为,因此这样需要的内存复杂度为 \(O(K\left | X \right |)\) 。

正向值迭代

  • 为什么需要正向值迭代?正向值和反向值迭代的区别是什么?
    反向:
    反向值迭代可以同时找到各顶点到目标顶点的最优计划;
    反向值迭代需要目标顶点是确定不变的;
    正向:
    正向值迭代可以用来找到从初始顶点出发到其他各顶点的最优计划;
    正向值迭代需要初始顶点是确定不变的;

基本思想: 在状态空间中迭代计算最优的 cost-to-come 代价值。
下图为上例,根据正向值迭代得到的最优 cost-to-come 代价值表。

最优不定步长规划

\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\)

通过引入代价项Lf(xf)这一技巧,将离散可行规划中的约束转换为优化问题代价函数中的一项。

对比最优定长规划问题和最优不定步长规划的区别,主要在于终止条件的设置。
定长问题:

不定步长:允许不同长度的计划

在最优不定步长问题中,从\(x_{I}\)到\(X_{G}\)的两步计划\(\left ( u_{1}, u_{2}\right )\)等效于从\(x_{I}\)到\(X_{G}\)的五步计划\(\left ( u_{1}, u_{2},u_{T},u_{T},u_{T}\right )\),因此最优定长规划中的正(反)向值迭代优化方法都可以扩展用于最优不定步长问题中。

使用逻辑定义离散规划

当状态空间巨大时,对于计算机去解决这样的规划问题会比较困难,基于逻辑的表示形式在定义离散规划问题时比较流行,因为输出的结果是逻辑可解释的,但是由于基于逻辑的表示形式难以泛化,因此在连续空间、感知不确定、多决策的规划问题中,状态空间的表示形式仍然适用。

STRIPS-Like 表示法

举例: 放电池到手电筒内

planning algorithms chapter 2的更多相关文章

  1. planning algorithms chapter 3

    chapter 3 几何表示和变换 P.S: 总算到了 motion planning 部分了 几何建模 几何建模主要有两类方法:边界表示法和实体表示法. 环境模型可以是二维或三维,实体主要包括障碍物 ...

  2. planning algorithms chapter 1

    chapter 1 介绍 什么是规划? 在机器人领域,运动规划和轨迹规划主要用来解决"怎么移动钢琴"的问题,这个问题是如何将钢琴从一个房间移动到另一个房间,并且保证钢琴不和其他事物 ...

  3. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

  4. Following a Select Statement Through Postgres Internals

    This is the third of a series of posts based on a presentation I did at the Barcelona Ruby Conferenc ...

  5. Github上的1000多本免费电子书重磅来袭!

    Github上的1000多本免费电子书重磅来袭!   以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...

  6. Github 的一个免费编程书籍列表

    Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...

  7. Boyer-Moore algorithm

    http://www-igm.univ-mlv.fr/~lecroq/string/node14.html Main features performs the comparisons from ri ...

  8. 字符串匹配--Karp-Rabin算法

    主要特征 1.使用hash函数 2.预处理阶段时间复杂度O(m),常量空间 3.查找阶段时间复杂度O(mn) 4.期望运行时间:O(n+m) 本文地址:http://www.cnblogs.com/a ...

  9. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

随机推荐

  1. Geany——Python配置

    Geany是一个很不错的编辑器,操作很简单,这里记录一下Geany的入手设置(在下是一个Python程序猿,就以Python为例): 1:新建:选择 下拉菜单中的  main.py  ,然后就能生成P ...

  2. Java之路---Day19(set接口)

    set接口 java.util.Set 接口和 java.util.List 接口一样,同样继承自 Collection 接口,它与 Collection 接口中的方 法基本一致,但是set接口中元素 ...

  3. 关于UDP协议

    UDP协议的特点. 1.UDP是一个无连接协议,传输数据之前接收端和发送端之间不建立连接. 想传输数据的时候就抓取数据扔出去,不监控是否被正确和全面的接受到. 2.因为不需要建立连接,也就不需要维护连 ...

  4. 08-Vuex

    Vuex 一.简介 ① 是什么:是一个状态管理工具,存放项目组件中的公共数据 二.使用语法 ① 语法 -1. 创建 Vuex 实例 const store = new Vuex.Store({ sta ...

  5. selenium自动化爬虫测试

    import time from selenium import webdriver from lxml import etree from selenium.webdriver import Act ...

  6. APP安全测试

    app 常见风险 一. clinet端 1.反编译 2.签名破解 3.调试 4.导出组件 5.拒绝服务 6.输入记录 二.传输 1.信息泄露,未使用加密服务(ssl) 2.篡改 三.服务端 1.SQL ...

  7. Golang: 解析JSON数据之一

    JSON 作为目前最流行的数据传输格式, 相信每个程序员都跟它打过交道吧.使用 Go 语言时,也不可避免的要操作 JSON 数据,令人惊喜的是,Go 内置了序列化和反序列化 JSON 的功能,今天就来 ...

  8. Linux系统密码复杂度安全配置

    密码有效期控制 在文件/etc/login.defs中进行设置,如下参数 PASS_MAX_DAYS 180 #密码最长过期天数 PASS_MIN_DAYS 30 #密码最小过期天数 PASS_MIN ...

  9. Nodejs入门级

    应用不同模块分析 我们来分解一下这个应用,为了实现一个应用,我们需要实现哪些部分呢? 我们需要提供Web页面,因此需要一个HTTP服务器 对于不同的请求,根据请求的URL,我们的服务器需要给予不同的响 ...

  10. 记录一次win2003服务器的IIS服务加载.flv后缀的资源报错404的处理方法

    问题:访问某个域名下的xxxx.flv资源,页面报错404. 解决思路: 1.权限是否给足 user权限给完全控制咯 如果你访问该域名下的其他资源无问题的话就不是介个原因了 2.MIME类型是否少了 ...