planning algorithms chapter 2 :Discrete Planning

离散可行规划导论

问题定义

在离散规划中,状态是“可数”的,有限的。
离散可行规划:

  1. 非空状态空间 X
  2. 对于每个状态 x,存在一个有限的动作空间 U(x)
  3. 对于每个状态和动作空间,存在状态转移方程,产生一个新的状态
  4. 一个初始状态 xi
  5. 一个目标集 Xg

为了方便表达离散可行规划的定义,通常采用有向状态转移图来表示,图上的顶点集合表示状态空间 X,只有当两顶点之间可状态转移时,图上两顶点之间的有向边才存在。初始状态和目标集可以表示为图上特别指定的顶点。

离散规划的例子

  • 2D 网格上移动(“迷宫”)

  • 魔方拼图

图搜索算法

前向搜索算法

上图显示了通用图搜索算法模板,其中有几点需要注意:Q 内部如何排序,如何判断状态属于目标状态,如何得到计划(动作序列),如何判断该状态是否已经访问过,是否需要更新状态代价值(如在Dijkstra 和 A* 算法)

几种前向搜索算法,区别在于定义了Q 这个优先级队列内部不同的排序方式

  • 广度优先:FIFO
  • 深度优先:LIFO
  • Dijkstra :一种图单源最短路径搜索算法,一种特殊的动态规划形式
    在Dijkstra中,图上每条边附带一个代价(l(x, u) >= 0),Q 内部是按照从初始状态到达该状态的累计代价(C(x),cost-to-come)排序。cost-to-come 在搜索过程中通过DP方式来增量计算(C(x‘) = C(x) + l(x, u), 代表最优)。
    Dijkstra 可以保证一旦某个状态被访问,则该状态的 cost-to-come一定是最优的。Dijkstra 内部 Q 实现采用的 Fibonacci heap 这种数据结构,可以实现在常数时间内判断某个状态是否被访问过。
  • A-star :基于Dijkstra进行扩展,引入启发项值(G(x),cost-to-go),当G(x) = 0 时, A-star 退化成Dijkstra,Q 内部是按照从初始状态到达目标状态的预估最优代价( C(x’) + G(x‘)) 进行排序。
  • 最佳优先搜索:Q 内部是按照 cost-to-go 排序,一种贪心搜索,不保证最优,但搜索速度快。
  • 迭代加深搜索:通过不断增加深度优先搜索深度的一种搜索,将深度优先搜索转换为一种系统性搜索方式(能够访问可到达的所有状态)。
    迭代加深搜索相比 BFS 使用更少的内存,迭代加深搜索结合 A-star 的思想,形成了 IDA* 算法,在每次迭代过程中,最大深度步长为C(x’) + G(x‘)。

其他搜索算法

  • 反向搜索算法

  • 双向搜索算法


当两棵搜索树相遇时,搜索结束,返回成功。如果其中任一搜索树的优先级队列为空, 且两颗树未相遇,则搜索结束,返回失败。

搜索算法的统一视角

上述所有的搜索算法遵循以下一些共同的模式:

  1. 初始
    搜索开始时,搜索图 G(V,E)中 E为空集,V只包含初始状态
  2. 选择顶点
    从V中选择一个顶点,这通常是通过维护一个优先级队列实现
  3. 应用动作
    基于V中选择的某个顶点,应用动作后,生成一个新的状态 x = f(x0, u)
  4. 向搜索图中插入有向边
    新状态 x 如果不在 V 中,则将 x 插入到 V 中
  5. 检查解决方案
    如果只有一颗搜索树,根据搜索图 G 得到从初始状态到目标状态的路径会比较简单。如果搜索树数量大于 1 颗,复杂度会增加。
  6. 返回到步骤 2
    迭代直到找到一个解决方案。

离散最优规划

最优定长规划


\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\)

通过引入代价项Lf(xf)这一技巧,将离散可行规划中的约束转换为优化问题代价函数中的一项。

基本思想: 最优规划解决方案的子组成方案也是最优的,于是可以通过动态规划方法解决。在最优定长规划中,采用一种迭代算法,称为 值迭代,它的主要思想是在状态空间中迭代计算最优的 cost-to-go(或 cost-to-come)。Dijkstra’s algorithm 也是 值迭代的一种方式。

反向值迭代

基本思想: 在状态空间中迭代计算最优的 cost-to-go 代价值。在特殊场景下,该方法退化为 Dijkstra 方法。

符号: $ G_{k}^{ \ast} $ :F 表示最后一步,$ G_{k}^{ \ast} $ 表示从第 k 步到 最后一步(F 步)最佳计划下的累计代价

初始条件: $ G_{F}^{ \ast}\left ( x_{F} \right ) = l_{F}\left ( x_{F} \right ) $
结论:


推导过程:

值迭代过程:
$ G_{F}^{ \ast}\rightarrow G_{K}^{ \ast}\rightarrow G_{K-1}^{ \ast}\cdots G_{k}^{ \ast}\rightarrow G_{k-1}^{ \ast}\rightarrow\cdots G_{2}^{ \ast}\rightarrow G_{1}^{ \ast} $

时间复杂度: $ O\left ( K\left | X \right |\left | U \right | \right ) $

离散最优规划标准定义\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\),该时间复杂度为 $ O\left | U \right |^K $,通过引入动态规划,极大降低了复杂度。

举例:


如上图,a 列 $ G_{1}^{ \ast} $ 的值 $G_{1}^{ \ast}\left ( a \right ) $ 代表了 5 步定步长最优规划的累计代价为 6 。那么如何体现动态规划思想降低时间复杂度呢?
当计算 $ G_{4}^{ \ast} $ 的值时,只有 b 和 c 可以只经过 1 步到达 d,再经过1 步到达目标 e,因此只有\(G_{4}^{ \ast}\left ( b \right )\)、\(G_{4}^{ \ast}\left ( c \right )\)为有限值。再计算 \(G_{3}^{ \ast}\) 的值时,只有经过 b 和 c 的路径才可能经过 5 步到达 目标 e,因此缩小了考虑的范围,具体程序表现为选择到达下一顶点的最小累计代价的行为。

那么,得到了最佳cost-to-go的表,如何提取最佳计划(或路径)?
一种解决方案是为每个顶点存储最优 \(G_{n}^{ \ast}\)所对应的行为,因此这样需要的内存复杂度为 \(O(K\left | X \right |)\) 。

正向值迭代

  • 为什么需要正向值迭代?正向值和反向值迭代的区别是什么?
    反向:
    反向值迭代可以同时找到各顶点到目标顶点的最优计划;
    反向值迭代需要目标顶点是确定不变的;
    正向:
    正向值迭代可以用来找到从初始顶点出发到其他各顶点的最优计划;
    正向值迭代需要初始顶点是确定不变的;

基本思想: 在状态空间中迭代计算最优的 cost-to-come 代价值。
下图为上例,根据正向值迭代得到的最优 cost-to-come 代价值表。

最优不定步长规划

\(L\left ( \pi _{K} \right ) = \sum_{k=1}^{K}l(x_{k},u_{k}) + l_{F}(x_{F})\)

通过引入代价项Lf(xf)这一技巧,将离散可行规划中的约束转换为优化问题代价函数中的一项。

对比最优定长规划问题和最优不定步长规划的区别,主要在于终止条件的设置。
定长问题:

不定步长:允许不同长度的计划

在最优不定步长问题中,从\(x_{I}\)到\(X_{G}\)的两步计划\(\left ( u_{1}, u_{2}\right )\)等效于从\(x_{I}\)到\(X_{G}\)的五步计划\(\left ( u_{1}, u_{2},u_{T},u_{T},u_{T}\right )\),因此最优定长规划中的正(反)向值迭代优化方法都可以扩展用于最优不定步长问题中。

使用逻辑定义离散规划

当状态空间巨大时,对于计算机去解决这样的规划问题会比较困难,基于逻辑的表示形式在定义离散规划问题时比较流行,因为输出的结果是逻辑可解释的,但是由于基于逻辑的表示形式难以泛化,因此在连续空间、感知不确定、多决策的规划问题中,状态空间的表示形式仍然适用。

STRIPS-Like 表示法

举例: 放电池到手电筒内

planning algorithms chapter 2的更多相关文章

  1. planning algorithms chapter 3

    chapter 3 几何表示和变换 P.S: 总算到了 motion planning 部分了 几何建模 几何建模主要有两类方法:边界表示法和实体表示法. 环境模型可以是二维或三维,实体主要包括障碍物 ...

  2. planning algorithms chapter 1

    chapter 1 介绍 什么是规划? 在机器人领域,运动规划和轨迹规划主要用来解决"怎么移动钢琴"的问题,这个问题是如何将钢琴从一个房间移动到另一个房间,并且保证钢琴不和其他事物 ...

  3. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

  4. Following a Select Statement Through Postgres Internals

    This is the third of a series of posts based on a presentation I did at the Barcelona Ruby Conferenc ...

  5. Github上的1000多本免费电子书重磅来袭!

    Github上的1000多本免费电子书重磅来袭!   以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...

  6. Github 的一个免费编程书籍列表

    Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...

  7. Boyer-Moore algorithm

    http://www-igm.univ-mlv.fr/~lecroq/string/node14.html Main features performs the comparisons from ri ...

  8. 字符串匹配--Karp-Rabin算法

    主要特征 1.使用hash函数 2.预处理阶段时间复杂度O(m),常量空间 3.查找阶段时间复杂度O(mn) 4.期望运行时间:O(n+m) 本文地址:http://www.cnblogs.com/a ...

  9. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

随机推荐

  1. MySQL5.6.17 绿色版 安装配置

    安装篇: 下载完成之后,用解压工具解压到没有中文.空格的文件夹下,解压后的显示如图: 个人建议把解压后的文件夹重命名,如果有中文去掉中文,便于自己理解使用,如图: 打开重命名之后的文件夹,找到mysq ...

  2. Python基础之datetime、sys模块

    1.datetime模块 1)datetime.datetime.now(),返回各当前时间.日期类型. datetime.datetime.now(),返回当前日期. import datetime ...

  3. 2019 开创java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.开创等公司offer,岗位是Java后端开发,因为发展原因最终选择去了开创,入职一年时间了,也成为了面试官,之 ...

  4. [Linux] 树莓派编译python3.7.4

    python3.7.4 源码编译后遇到ssl错误: pip is configured with locations that require TLS/SSL, however the ssl mod ...

  5. elementUI一次请求上传多个文件

    elementui <el-upload                       class="upload-demo"                       ac ...

  6. Java 之 异常的处理

    Java 异常处理的五个关键字:try.catch.finally.throws.throw 一.捕获异常 try...catch 如果异常出现的话,会立刻终止程序,所以我们得处理异常. try... ...

  7. Numpy和Pandas的使用入门

    Numpy Numpy基本数据结构 np.array()函数接受一个多维list,返回对应纬度的矩阵 vector = np.array([1, 2, 3, 4]) matrix = np.array ...

  8. JCEF-鼠标右键菜单

    为鼠标添加自定义菜单,比较简单,实现一个Handler就行 Hanler实现类 public class MenuHandler extends CefContextMenuHandlerAdapte ...

  9. rest framework 之视图

    一.APIView APIView 直接继承 View(Django 内置的 View),也就是说 APIView 是最贴近原生 Django 的 View 的. 因此可定制程度高,根据请求方法不同执 ...

  10. 利用Metasploit攻击Android

    首先我在Kali下生成一个Android的应用程序,即apk格式的文件,用到的命令是: msfvenom -p android/meterpreter/reverse_tcp LHOST=本地ip L ...