Signature:
pd.read_excel(
['io', 'sheet_name=0', 'header=0', 'skiprows=None', 'skip_footer=0', 'index_col=None', 'names=None', 'usecols=None', 'parse_dates=False', 'date_parser=None', 'na_values=None', 'thousands=None', 'convert_float=True', 'converters=None', 'dtype=None', 'true_values=None', 'false_values=None', 'engine=None', 'squeeze=False', '**kwds'],
)
Docstring:
Read an Excel table into a pandas DataFrame Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object, pandas ExcelFile, or xlrd workbook.
The string could be a URL. Valid URL schemes include http, ftp, s3,
and file. For file URLs, a host is expected. For instance, a local
file could be file://localhost/path/to/workbook.xlsx
sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed
sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned.
list|None -> Dict of DataFrames is returned, with keys representing
sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame
* 1 -> 2nd sheet as a DataFrame
* "Sheet1" -> 1st sheet as a DataFrame
* [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
* None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0
.. deprecated:: 0.21.0
Use `sheet_name` instead header : int, list of ints, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``. Use None if there is no header.
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, list of ints, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``usecols``, index_col
is based on the subset.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion. .. versionadded:: 0.20.0 true_values : list, default None
Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None
Values to consider as False .. versionadded:: 0.19.0 parse_cols : int or list, default None
.. deprecated:: 0.21.0
Pass in `usecols` instead. usecols : int or list, default None
* If None then parse all columns,
* If int then indicates last column to be parsed
* If list of ints then indicates list of column numbers to be parsed
* If string then indicates comma separated list of Excel column letters and
column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
engine: string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd
convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally Returns
-------
parsed : DataFrame or Dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name
argument for more information on when a Dict of Dataframes is returned.
File: c:\users\lenovo\anaconda3\lib\site-packages\pandas\io\excel.py
Type: function

  

read_excle的更多相关文章

  1. python接口自动化1

    组织架构: 包括配置文件,反射.文件路径.Excel操作.测试报告生成 case.config [MODE] file_name=case_data.xlsx mode={"register ...

  2. Pandas模块:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

  3. Pandas:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

  4. 利用Python进行数据分析:【Pandas】(Series+DataFrame)

    一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...

  5. pyhton pandas数据分析基础入门(一文看懂pandas)

    //2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻 ...

  6. python 作业 批量读取excel文件并合并为一张excel

    1 #!/usr/bin/env python 2 # coding: utf-8 3 4 def concat_file(a,b): 5 #如何批量读取并快速合并文件夹中的excel文件 6 imp ...

随机推荐

  1. Cookie 允许第三方cookie

    这样本地调线上的接口,就可以使用线上接口生成的cookie了. 或者允许,或者增加白名单.

  2. Zabbix案例实践|Zabbix屏蔽告警

    近期项目中,客户要求在凌晨00:00到02:00的CPU屏蔽虚拟化监控上ESXI的红色告警,红色告警是由于某台vmCPU利用率过高而产生的.做法如下:1. 找到红色告警的触发器,通过触发器找到监控项, ...

  3. vue封装一个简单的div框选时间的组件

    记录一下我前段时间封装的一个vue组件吧.技术需要积累,有时间我把我之前写的还不错的组件都开源出来.并尝试vue和react 两种方式的组件封装.今天简单写下鼠标框选div选中效果的封装吧. div框 ...

  4. LVS(3种模式+10种调度算法)

    一.LVS简介 LVS(Linux Virtual Server)即Linux虚拟服务器,是由章文嵩博士主导的开源负载均衡项目,目前LVS已经被集成到Linux内核模块中.该项目在Linux内核中实现 ...

  5. Django之拾遗

    一.设计模式 1.1 MVC 模型(M)是数据的表述,非真正数据,而是数据接口. 视图(V)是你看到的界面,是模型的表现层,此外还提供了收集用户输入的接口. 控制器(C)控制模型和视图之间的信息流动. ...

  6. 记一次stm8l程序跑飞

    项目使用stm8l051f3做主控,CC2500做数据接收,不发送. 跑飞的现象就是,刚开始能运行,经过一段未知长度的时间,有可能是3分钟,有可能是30分钟,指示灯不再闪烁,中断按键单片机无反应. 接 ...

  7. memcached源码分析二-lru

    在前一篇文章中介绍了memcached中的内存管理策略slab,那么需要缓存的数据是如何使用slab的呢? 1.    缓存对象item内存分布 在memcached,每一个缓存的对象都使用一个ite ...

  8. Jupyter Notebook的配置(密码端口+远程登陆+nbextension)

    1 生成配置文件 linux和mac系统打开终端 windows系统打开anaconda自带的终端 jupyter notebook --generate-config 此时系统会生成 ~/.jupy ...

  9. Java身份证处理工具

    身份证处理工具 /** * <html> * <body> * <P> Copyright 1994 JsonInternational</p> * & ...

  10. 使用winform程序控制window服务的操作

    继上篇 c#之添加window服务(定时任务) 基础之上, 这篇文章主要讲述,使用winform程序来控制window服务的安装,启动,停止,卸载等操作 1.在同一个解决方案添加winform项目,如 ...