read_excle
Signature:
pd.read_excel(
['io', 'sheet_name=0', 'header=0', 'skiprows=None', 'skip_footer=0', 'index_col=None', 'names=None', 'usecols=None', 'parse_dates=False', 'date_parser=None', 'na_values=None', 'thousands=None', 'convert_float=True', 'converters=None', 'dtype=None', 'true_values=None', 'false_values=None', 'engine=None', 'squeeze=False', '**kwds'],
)
Docstring:
Read an Excel table into a pandas DataFrame Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object, pandas ExcelFile, or xlrd workbook.
The string could be a URL. Valid URL schemes include http, ftp, s3,
and file. For file URLs, a host is expected. For instance, a local
file could be file://localhost/path/to/workbook.xlsx
sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed
sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned.
list|None -> Dict of DataFrames is returned, with keys representing
sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame
* 1 -> 2nd sheet as a DataFrame
* "Sheet1" -> 1st sheet as a DataFrame
* [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
* None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0
.. deprecated:: 0.21.0
Use `sheet_name` instead header : int, list of ints, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``. Use None if there is no header.
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, list of ints, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``. If a
subset of data is selected with ``usecols``, index_col
is based on the subset.
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
Use `object` to preserve data as stored in Excel and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion. .. versionadded:: 0.20.0 true_values : list, default None
Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None
Values to consider as False .. versionadded:: 0.19.0 parse_cols : int or list, default None
.. deprecated:: 0.21.0
Pass in `usecols` instead. usecols : int or list, default None
* If None then parse all columns,
* If int then indicates last column to be parsed
* If list of ints then indicates list of column numbers to be parsed
* If string then indicates comma separated list of Excel column letters and
column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
both sides.
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
engine: string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd
convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally Returns
-------
parsed : DataFrame or Dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name
argument for more information on when a Dict of Dataframes is returned.
File: c:\users\lenovo\anaconda3\lib\site-packages\pandas\io\excel.py
Type: function
read_excle的更多相关文章
- python接口自动化1
组织架构: 包括配置文件,反射.文件路径.Excel操作.测试报告生成 case.config [MODE] file_name=case_data.xlsx mode={"register ...
- Pandas模块:表计算与数据分析
目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...
- Pandas:表计算与数据分析
目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...
- 利用Python进行数据分析:【Pandas】(Series+DataFrame)
一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...
- pyhton pandas数据分析基础入门(一文看懂pandas)
//2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻 ...
- python 作业 批量读取excel文件并合并为一张excel
1 #!/usr/bin/env python 2 # coding: utf-8 3 4 def concat_file(a,b): 5 #如何批量读取并快速合并文件夹中的excel文件 6 imp ...
随机推荐
- Cookie 允许第三方cookie
这样本地调线上的接口,就可以使用线上接口生成的cookie了. 或者允许,或者增加白名单.
- Eureka学习笔记
解决: 自我保护: 消费端的调用: Euraka的集群:
- VMware vSphere6.0 服务器虚拟化部署安装图解(最全,最详细)-搭建的所有步骤
VMware vSphere6.0 服务器虚拟化部署安装图解 一 .VMware vSphere部署的前期规划要点 1.vSphere的优点 (略) 2如何利用现在的设备架构虚拟化环境 在虚拟化过程中 ...
- C++ 读写 Excel 文件
//Microsoft Visual Studio 2015 Enterprise #include <fstream> #include <string> #include ...
- Linux04 目录的相关操作(mkdir、rmdir、rm、cp)
一.创建目录:mkdir mkdir 目录名 二.删除目录:rmdir / rm rmdir 目录名 rm -r 目录名 每一级子目录都会询问是否删除 rm -rf 目录名 慎用,给 ...
- python学习-70 自定制format
# 自定义format dic_date = { 'ymd':'{0.year}:{0.month}:{0.day}', 'dmy':'{0.day}-{0.month}-{0.year}' } cl ...
- gorm 实现 mysql for update 排他锁
关于 MySQL 的排他锁网上已经有很多资料进行了介绍,这里主要是记录一下 gorm 如果使用排他锁. 排他锁是需要对索引进行锁操作,同时需要在事务中才能生效.具体操作如下: 假设有如下数据库表结构: ...
- 【LEETCODE】48、数组分类,简单级别,题目:189,217,219,268,283,414
package y2019.Algorithm.array; import java.util.Arrays; import java.util.Stack; /** * @ClassName Rot ...
- Linux设置普通用户无密码sudo权限
配置普通用户无密码sudo权限: root用户进入到Linux系统的/etc目录下 cd /etc 将sudoers文件赋予写的权限 chmod u+w /etc/sudoers 编辑sudoers文 ...
- Python生成流水线《无限拍卖》文字!
话说,原文也是这样流水线生产的吧··· 代码 import random one_char_word=["烈","焰","冰"," ...