莫烦TensorFlow_06 plot可视化
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #input layer 1
#hidden layer 10
#output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
reduction_indices=[1]
)
) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) #可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() # not frozen
plt.show() # block=False for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入
if i % 50 == 0:
#print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)
莫烦TensorFlow_06 plot可视化的更多相关文章
- 莫烦TensorFlow_08 tensorboard可视化进阶
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_l ...
- 莫烦TensorFlow_07 tensorboard可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
随机推荐
- (day51)三、ORM、路由层、版本差异、流程图
目录 一.ORM关系建立 (一)ForeignKey(一对多) (二)ManyToManyField(多对多) (三)OneToOneField(一对一) 二.django请求生命周期流程图 三.ur ...
- 剑指Offer-15.反转链表(C++/Java)
题目: 输入一个链表,反转链表后,输出新链表的表头. 分析: 可以利用栈将链表元素依次压入栈中,再从栈中弹出元素重新建立链表,返回头节点. 也可以在原有的链表上来翻转,先保存当前节点的下一个节点,然后 ...
- 【[POI2012]TOU-Tour de Byteotia】
[[POI2012]TOU-Tour de Byteotia] 洛谷P3535 https://www.luogu.org/problemnew/show/P3535 JDOJ 2193旅游景点(同类 ...
- 17. 抽象建模能力&发散思维能力&综合(5)
抽象建模能力 题一:[扑克牌顺子] LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了5张牌,想测测自己的手气,看看能不能抽 ...
- day_0
Day01 - 初识Python - Python简介 - Python的历史 / Python的优缺点 / Python的应用领域 - 搭建编程环境 - Windows环境 / Linux环境 / ...
- 【目录】洛谷|CODEVS题解汇总
[动规]爱与愁的心痛 [动规]编辑距离 [动规]采药 [动规]创意吃鱼法 [动规]过河卒 [动规]开心的金明 [动规]旅行 [动规]骑士游历 [动规]数字三角形 [动规]最长连号 [动规]装箱问题 [ ...
- yum安装软件报错Error: Nothing to do
今天在一台新服务器上装一些常用软件,一开始安装ncdu(一个很好用的磁盘分析工具,用来查找大文件),报错如下: 在网上找了各种办法,什么更新yum啊,清理yum缓存啊的,统统没用 最后的找到的问题是, ...
- 在jenkins中处理外部命令7z的异常
powershell中有自己的异常捕获机制,但是在jenkins中处理第三方工具抛出的异常时,一直抓不到,疑惑了很久,本篇内容主要描述此次过程及解决方案. powershell可以处理外部异常 try ...
- ubutnu 挂载磁盘
1. 查看已挂载的磁盘 df -h 2. 查看可挂载的磁盘 fdisk -l 3. 创建挂载点 mkdir /media/HDD 注意: /media/HDD 必须为空文件夹 4. 挂载 sudo m ...
- oracle使用sequence批量写数据
本博客是对之前写的博客Oracle批量新增更新数据的补充,oracle的知识真是多,其实要学精任何一门知识都是要花大量时间的,正所谓: 学如逆水行舟,不进则退 先介绍oracle sequence的一 ...