莫烦TensorFlow_06 plot可视化
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #input layer 1
#hidden layer 10
#output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
reduction_indices=[1]
)
) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) #可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() # not frozen
plt.show() # block=False for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入
if i % 50 == 0:
#print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)
莫烦TensorFlow_06 plot可视化的更多相关文章
- 莫烦TensorFlow_08 tensorboard可视化进阶
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_l ...
- 莫烦TensorFlow_07 tensorboard可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
随机推荐
- 使用threaddump-analyzer 快速查看jvm thread 状态信息
日常开发中,我们可以需要通过thread dump 查看线程信息,比如锁,spotify 团队提供了一个web 界面,很方便 以下是简单使用,同时添加了docker 支持 添加docker 支持 cl ...
- Project Euler Problem 675
ORZ foreverlasting聚聚,QQ上问了他好久才会了这题(所以我们又聊了好久的Gal) 我们先来尝试推导一下\(S\)的性质,我们利用狄利克雷卷积来推: \[2^\omega=I\ast| ...
- FFmpeg 常用结构体
0.FFmpeg 中最关键的结构体之间的关系 FFmpeg 中结构体很多.最关键的结构体可以分成以下几类: 1)解协议(http, rtsp, rtmp, mms) AVIOContext,URLPr ...
- vue项目打包之后样式错乱问题,如何处理
最近公司做的这个项目,要大量修改element里面的css样式,所以项目打包之后 会出现样式和本地开发的时候样式有很多不一样,原因可能是css加载顺序有问题,样式被覆改了. 所以在mian.js里面这 ...
- axios 源码解析(中) 代码结构
axios现在最新的版本的是v0.19.0,本节我们来分析一下它的实现源码,首先通过 gitHub地址获取到它的源代码,地址:https://github.com/axios/axios/tree/v ...
- Vue.js 源码分析(十六) 指令篇 v-on指令详解
可以用 v-on 指令监听 DOM 事件,并在触发时运行一些 JavaScript 代码,例如: <!DOCTYPE html> <html lang="en"& ...
- 漫谈微服务架构:什么是Spring Cloud,为何要选择Spring Cloud
Spring Cloud是基于Spring Boot的,因此还在使用SpringMVC的同学要先了解Spring Boot.先上一段官话,Spring Cloud是一个基于Spring Boo ...
- CreateDatabase is not supported by the provider
背景:对于本地数据库如(SQLite\Access) Connection string error: “An exception occurred while initializing the da ...
- DVWA-基于布尔值的盲注与基于时间的盲注学习笔记
DVWA-基于布尔值的盲注与基于时间的盲注学习笔记 基于布尔值的盲注 一.DVWA分析 将DVWA的级别设置为low 1.分析源码,可以看到对参数没有做任何过滤,但对sql语句查询的返回的结果做了改变 ...
- 在React中使用react-router-dom路由
1,路由组件的基本实现 使用React构建的单页面应用,要想实现页面间的跳转,首先想到的就是使用路由.在React中,常用的有两个包可以实现这个需求,那就是react-router和react-rou ...