import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #input layer 1
#hidden layer 10
#output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
reduction_indices=[1]
)
) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) #可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() # not frozen
plt.show() # block=False for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入
if i % 50 == 0:
#print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)

  

莫烦TensorFlow_06 plot可视化的更多相关文章

  1. 莫烦TensorFlow_08 tensorboard可视化进阶

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_l ...

  2. 莫烦TensorFlow_07 tensorboard可视化

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

  3. 莫烦大大TensorFlow学习笔记(9)----可视化

      一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...

  4. tensorflow 莫烦教程

    1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...

  5. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  6. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

  7. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  8. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  9. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

随机推荐

  1. CF812C Sagheer and Nubian Market

    CF812C Sagheer and Nubian Market 洛谷评测传送门 题目描述 On his trip to Luxor and Aswan, Sagheer went to a Nubi ...

  2. windows下 go vscode编译运行方法

    1:直接在终端运行go run命令编译 2.安装code runner插件,根据箭头标示顺序,可以在右侧看到它支持的语言.

  3. Dockerfil

    Dockerfile简介 dockerfile 是一个文本格式的配置文件, 用户可以使用 Dockerfile 来快速创建自定义的镜像,另外,使用Dockerfile去构建镜像好比使用pom去构建ma ...

  4. Mondb

    1. MongoDB简介 • MongoDB是为快速开发互联网Web应用而设计的数据库系统.• MongoDB的设计目标是极简.灵活.作为Web应用栈的一部分.• MongoDB的数据模型是面向文档的 ...

  5. VS2017项目升级 error LNK2005: "public: __thiscall ATL::CTime::

    我是将项目升级到从VS2012 升级VS2017, 报错如下 1>atlsd.lib(atltime.obj) : error LNK2005: "public: __thiscall ...

  6. Flume笔记

    flume自定义拦截器:实现Interceptor接口flume自定义source:继承AbstractSourceflume自定义sink:继承AbstractSink azkaban:任务调度工具 ...

  7. hdu-6071 Lazy Running

    In HDU, you have to run along the campus for 24 times, or you will fail in PE. According to the rule ...

  8. Spring Boot自定义配置实现IDE自动提示

    一.背景 官方提供的spring boot starter的配置项,我们用IDE配置的时候一般都有自动提示的,如下图所示 而我们自己自定义的配置却没有,对开发非常不友好容易打错配置,那这个是怎样实现的 ...

  9. NumPy 文件数据读写

    写数据 NumPy 数组可以使用 np.save 方法保存到本地磁盘中,默认扩展名是 .npy,并且是未压缩的二进制格式. import numpy as np a = np.array([[0, 1 ...

  10. laravel 163发送邮件

    配置163邮箱账户 首先需要有163邮箱,这里在163邮箱必须在设置里面开启SMTP服务,并设置密码 修改laravel根目录下的.env文件, 设置邮箱相关内容: MAIL_DRIVER=smtp ...