莫烦TensorFlow_06 plot可视化
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise #input layer 1
#hidden layer 10
#output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
reduction_indices=[1]
)
) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) #可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() # not frozen
plt.show() # block=False for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入
if i % 50 == 0:
#print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass prediction_value = sess.run(prediction,feed_dict={xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)
莫烦TensorFlow_06 plot可视化的更多相关文章
- 莫烦TensorFlow_08 tensorboard可视化进阶
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_l ...
- 莫烦TensorFlow_07 tensorboard可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
随机推荐
- CF812C Sagheer and Nubian Market
CF812C Sagheer and Nubian Market 洛谷评测传送门 题目描述 On his trip to Luxor and Aswan, Sagheer went to a Nubi ...
- windows下 go vscode编译运行方法
1:直接在终端运行go run命令编译 2.安装code runner插件,根据箭头标示顺序,可以在右侧看到它支持的语言.
- Dockerfil
Dockerfile简介 dockerfile 是一个文本格式的配置文件, 用户可以使用 Dockerfile 来快速创建自定义的镜像,另外,使用Dockerfile去构建镜像好比使用pom去构建ma ...
- Mondb
1. MongoDB简介 • MongoDB是为快速开发互联网Web应用而设计的数据库系统.• MongoDB的设计目标是极简.灵活.作为Web应用栈的一部分.• MongoDB的数据模型是面向文档的 ...
- VS2017项目升级 error LNK2005: "public: __thiscall ATL::CTime::
我是将项目升级到从VS2012 升级VS2017, 报错如下 1>atlsd.lib(atltime.obj) : error LNK2005: "public: __thiscall ...
- Flume笔记
flume自定义拦截器:实现Interceptor接口flume自定义source:继承AbstractSourceflume自定义sink:继承AbstractSink azkaban:任务调度工具 ...
- hdu-6071 Lazy Running
In HDU, you have to run along the campus for 24 times, or you will fail in PE. According to the rule ...
- Spring Boot自定义配置实现IDE自动提示
一.背景 官方提供的spring boot starter的配置项,我们用IDE配置的时候一般都有自动提示的,如下图所示 而我们自己自定义的配置却没有,对开发非常不友好容易打错配置,那这个是怎样实现的 ...
- NumPy 文件数据读写
写数据 NumPy 数组可以使用 np.save 方法保存到本地磁盘中,默认扩展名是 .npy,并且是未压缩的二进制格式. import numpy as np a = np.array([[0, 1 ...
- laravel 163发送邮件
配置163邮箱账户 首先需要有163邮箱,这里在163邮箱必须在设置里面开启SMTP服务,并设置密码 修改laravel根目录下的.env文件, 设置邮箱相关内容: MAIL_DRIVER=smtp ...