一、JDBC数据源案例

1、概述

Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。

这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,
对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。
而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。 Java版本
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "students");
DataFrame jdbcDF = sqlContext.read().format("jdbc"). options(options).load(); Scala版本
val jdbcDF = sqlContext.read.format("jdbc").options(
Map("url" -> "jdbc:mysql://spark1:3306/testdb",
"dbtable" -> "students")).load() 案例:查询分数大于80分的学生信息

#授权表权限
grant all on testdb.* to ''@'spark1' with grant option;
flush privileges;

2、准备数据

mysql> create database testdb;
mysql> use testdb; mysql> create table student_infos(name varchar(20), age integer); mysql> create table student_scores(name varchar(20), score integer); mysql> insert into student_infos values('leo', 18),('marry', 17),('jack', 19); mysql> insert into student_scores values('leo', 88),('marry', 99),('jack', 60); mysql> create table good_student_infos(name varchar(20), age integer, score integer);

3、java案例实现

package cn.spark.study.sql;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; import scala.Tuple2; /**
* JDBC数据源
* @author Administrator
*
*/
public class JDBCDataSource { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("JDBCDataSource");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); // 总结一下
// jdbc数据源
// 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame
// 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
// 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中 // 分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc")
.options(options).load(); options.put("dbtable", "student_scores");
DataFrame studentScoresDF = sqlContext.read().format("jdbc")
.options(options).load(); // 将两个DataFrame转换为JavaPairRDD,执行join操作
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.get(1))));
} })
.join(studentScoresDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(String.valueOf(row.get(0)),
Integer.valueOf(String.valueOf(row.get(1))));
} })); // 将JavaPairRDD转换为JavaRDD<Row>
JavaRDD<Row> studentRowsRDD = studentsRDD.map( new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() { private static final long serialVersionUID = 1L; @Override
public Row call(
Tuple2<String, Tuple2<Integer, Integer>> tuple)
throws Exception {
return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
} }); // 过滤出分数大于80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter( new Function<Row, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Row row) throws Exception {
if(row.getInt(2) > 80) {
return true;
}
return false;
} }); // 转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields); DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect();
for(Row row : rows) {
System.out.println(row);
} // 将DataFrame中的数据保存到mysql表中
// 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓存
studentsDF.javaRDD().foreach(new VoidFunction<Row>() { private static final long serialVersionUID = 1L; @Override
public void call(Row row) throws Exception {
String sql = "insert into good_student_infos values("
+ "'" + String.valueOf(row.getString(0)) + "',"
+ Integer.valueOf(String.valueOf(row.get(1))) + ","
+ Integer.valueOf(String.valueOf(row.get(2))) + ")"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null;
Statement stmt = null;
try {
conn = DriverManager.getConnection(
"jdbc:mysql://spark1:3306/testdb", "", "");
stmt = conn.createStatement();
stmt.executeUpdate(sql);
} catch (Exception e) {
e.printStackTrace();
} finally {
if(stmt != null) {
stmt.close();
}
if(conn != null) {
conn.close();
}
}
} }); sc.close();
} }

42、JDBC数据源案例的更多相关文章

  1. Tomcat中使用JNDI加载JDBC数据源

    以前写JDBC的时候总是手工写一个类,用硬代码写上className.url.用户名和密码什么的,然后通过DriverManager获取到Connection.那样写是很方便,但是如果想更改的话,需要 ...

  2. spring中配置jdbc数据源

    1.加入jdbc驱动器包,mysql-connector-java.jar 2.加入commons-dbcp.jar配置数据源 3.在classpath下新建文件jdbc.properties,配置j ...

  3. weblogic配置jdbc数据源

    weblogic配置jdbc数据源的过程 方法/步骤   启动weblogic 管理服务器,使用管理用户登录weblogic管理控制台   打开管理控制台后,在左侧的树形域结构中,选择服务->数 ...

  4. JDBC数据源 使用JNDI连接池实现数据库的连接

    0.引言 许多Web应用程序需要通过JDBC驱动程序访问数据库,以支持该应用程序所需的功能.Java EE平台规范要求Java EE应用程序服务器为此目的提供一个DataSource实现(即,用于JD ...

  5. JDBC数据源连接池(4)---自定义数据源连接池

    [续上文<JDBC数据源连接池(3)---Tomcat集成DBCP>] 我们已经 了解了DBCP,C3P0,以及Tomcat内置的数据源连接池,那么,这些数据源连接池是如何实现的呢?为了究 ...

  6. JDBC数据源连接池(3)---Tomcat集成DBCP

    此文续<JDBC数据源连接池(2)---C3P0>. Apache Tomcat作为一款JavaWeb服务器,内置了DBCP数据源连接池.在使用中,只要进行相应配置即可. 首先,确保Web ...

  7. JDBC数据源连接池(2)---C3P0

    我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...

  8. JDBC数据源(DataSource)数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用。

    JDBC数据源(DataSource)的简单实现   数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用. 2.数据源提供了一种简单获取数据库连接的方式,并能在内部通 ...

  9. eclipse下jdbc数据源与连接池的配置及功能简介

    今天在做四则运算网页版的时候遇到了一个困惑,由于需要把每个产生的式子存进 数据库,所以就需要很多次重复的加载驱动,建立连接等操作,这样一方面写程序不方便,加大了程序量,另一方面,还有导致数据库的性能急 ...

随机推荐

  1. Unity的学习笔记(鼠标移动控制视角移动)

    using UnityEngine; public class MouseLook : MonoBehaviour { , MouseX = , MouseY = } //定义一个枚举,移动xy,或者 ...

  2. CORS讲解

    跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器  让运行在一个 origin (domain) 上的Web应用被准许访问来自不同源服务器上的指定的资源.当一个资源从与该资 ...

  3. IdentityServer4实现OAuth2.0四种模式之授权码模式

    接上一篇:IdentityServer4实现OAuth2.0四种模式之隐藏模式 授权码模式隐藏码模式最大不同是授权码模式不直接返回token,而是先返回一个授权码,然后再根据这个授权码去请求token ...

  4. debug 查询服务日志,用于定位服务在运行和启动过程中出现的问题

    vim /usr/lib/systemd/system/sshd.service [Unit] Description=OpenSSH server daemon Documentation=man: ...

  5. CentOS 7 - 安装PostgreSQL

    一,用yum安装PostgreSQL . 选择安装版本和服务器平台后,执行安装命令,例如我要安装是9.6版本,平台是CentOS 7. https://www.postgresql.org/downl ...

  6. spring 自定义schema 加载异常 White spaces are required between publicId and systemId.

    spring 项目启动报错 报错日志如下: Caused by: org.springframework.beans.factory.xml.XmlBeanDefinitionStoreExcepti ...

  7. Win10 C盘 系统和保留 占用空间 非常大

    Win10 C盘 系统和保留 占用空间 非常大今天在写代码的时候,突然发现Redis起不来了,一看原因,是因为C盘空间不足.然后,我看了下C盘,发现...一个叫系统和保留的东西,居然占了110G的空间 ...

  8. 打造kubernetes 高可用集群(nginx+keepalived)

    一.添加master 部署高可用k8s架构 1.拷贝/opt/kubernetes目录到新的master上(注意如果新机上部署了etcd要排除掉) scp -r /opt/kubernetes/ ro ...

  9. Spring boot集成Websocket,前端监听心跳实现

    第一:引入jar 由于项目是springboot的项目所以我这边简单的应用了springboot自带的socket jar <dependency> <groupId>org. ...

  10. linux 查看 端口3306

    1,查看3306端口被什么程序占用 lsof -i :3306 2,查看3306端口是被哪个服务使用着 netstat -tunlp | grep :3306 3,查看3306端口的是否已在使用中,可 ...