42、JDBC数据源案例
一、JDBC数据源案例
1、概述
Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。 这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,
对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。
而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。 Java版本
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "students");
DataFrame jdbcDF = sqlContext.read().format("jdbc"). options(options).load(); Scala版本
val jdbcDF = sqlContext.read.format("jdbc").options(
Map("url" -> "jdbc:mysql://spark1:3306/testdb",
"dbtable" -> "students")).load() 案例:查询分数大于80分的学生信息
#授权表权限
grant all on testdb.* to ''@'spark1' with grant option;
flush privileges;
2、准备数据
mysql> create database testdb;
mysql> use testdb; mysql> create table student_infos(name varchar(20), age integer); mysql> create table student_scores(name varchar(20), score integer); mysql> insert into student_infos values('leo', 18),('marry', 17),('jack', 19); mysql> insert into student_scores values('leo', 88),('marry', 99),('jack', 60); mysql> create table good_student_infos(name varchar(20), age integer, score integer);
3、java案例实现
package cn.spark.study.sql; import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; import scala.Tuple2; /**
* JDBC数据源
* @author Administrator
*
*/
public class JDBCDataSource { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("JDBCDataSource");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); // 总结一下
// jdbc数据源
// 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame
// 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
// 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中 // 分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc")
.options(options).load(); options.put("dbtable", "student_scores");
DataFrame studentScoresDF = sqlContext.read().format("jdbc")
.options(options).load(); // 将两个DataFrame转换为JavaPairRDD,执行join操作
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.get(1))));
} })
.join(studentScoresDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(String.valueOf(row.get(0)),
Integer.valueOf(String.valueOf(row.get(1))));
} })); // 将JavaPairRDD转换为JavaRDD<Row>
JavaRDD<Row> studentRowsRDD = studentsRDD.map( new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() { private static final long serialVersionUID = 1L; @Override
public Row call(
Tuple2<String, Tuple2<Integer, Integer>> tuple)
throws Exception {
return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
} }); // 过滤出分数大于80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter( new Function<Row, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Row row) throws Exception {
if(row.getInt(2) > 80) {
return true;
}
return false;
} }); // 转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields); DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect();
for(Row row : rows) {
System.out.println(row);
} // 将DataFrame中的数据保存到mysql表中
// 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓存
studentsDF.javaRDD().foreach(new VoidFunction<Row>() { private static final long serialVersionUID = 1L; @Override
public void call(Row row) throws Exception {
String sql = "insert into good_student_infos values("
+ "'" + String.valueOf(row.getString(0)) + "',"
+ Integer.valueOf(String.valueOf(row.get(1))) + ","
+ Integer.valueOf(String.valueOf(row.get(2))) + ")"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null;
Statement stmt = null;
try {
conn = DriverManager.getConnection(
"jdbc:mysql://spark1:3306/testdb", "", "");
stmt = conn.createStatement();
stmt.executeUpdate(sql);
} catch (Exception e) {
e.printStackTrace();
} finally {
if(stmt != null) {
stmt.close();
}
if(conn != null) {
conn.close();
}
}
} }); sc.close();
} }
42、JDBC数据源案例的更多相关文章
- Tomcat中使用JNDI加载JDBC数据源
以前写JDBC的时候总是手工写一个类,用硬代码写上className.url.用户名和密码什么的,然后通过DriverManager获取到Connection.那样写是很方便,但是如果想更改的话,需要 ...
- spring中配置jdbc数据源
1.加入jdbc驱动器包,mysql-connector-java.jar 2.加入commons-dbcp.jar配置数据源 3.在classpath下新建文件jdbc.properties,配置j ...
- weblogic配置jdbc数据源
weblogic配置jdbc数据源的过程 方法/步骤 启动weblogic 管理服务器,使用管理用户登录weblogic管理控制台 打开管理控制台后,在左侧的树形域结构中,选择服务->数 ...
- JDBC数据源 使用JNDI连接池实现数据库的连接
0.引言 许多Web应用程序需要通过JDBC驱动程序访问数据库,以支持该应用程序所需的功能.Java EE平台规范要求Java EE应用程序服务器为此目的提供一个DataSource实现(即,用于JD ...
- JDBC数据源连接池(4)---自定义数据源连接池
[续上文<JDBC数据源连接池(3)---Tomcat集成DBCP>] 我们已经 了解了DBCP,C3P0,以及Tomcat内置的数据源连接池,那么,这些数据源连接池是如何实现的呢?为了究 ...
- JDBC数据源连接池(3)---Tomcat集成DBCP
此文续<JDBC数据源连接池(2)---C3P0>. Apache Tomcat作为一款JavaWeb服务器,内置了DBCP数据源连接池.在使用中,只要进行相应配置即可. 首先,确保Web ...
- JDBC数据源连接池(2)---C3P0
我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...
- JDBC数据源(DataSource)数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用。
JDBC数据源(DataSource)的简单实现 数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用. 2.数据源提供了一种简单获取数据库连接的方式,并能在内部通 ...
- eclipse下jdbc数据源与连接池的配置及功能简介
今天在做四则运算网页版的时候遇到了一个困惑,由于需要把每个产生的式子存进 数据库,所以就需要很多次重复的加载驱动,建立连接等操作,这样一方面写程序不方便,加大了程序量,另一方面,还有导致数据库的性能急 ...
随机推荐
- SpringBoot指定额外需要扫描的包
我们都知道,SpringBoot主启动类标注了@SpringBootApplication注解,该注解引入了@ComponentScan注解 所以默认的包扫描规则是,程序会自动扫描主启动类所在包及其子 ...
- SpringBoot 多数据库支持:
SpringBoot 多数据库支持: springboot2.0+mybatis多数据源集成 https://www.cnblogs.com/cdblogs/p/9275883.html Spring ...
- C# 使用代理实现方法过滤
一.为什么要进行方法过滤 一些情况下我们需要再方法调用前记录方法的调用时间和使用的参数,再调用后需要记录方法的结束时间和返回结果,当方法出现异常的时候,需要记录异常的堆栈和原因,这些都是与业务无关的代 ...
- tcp协议close_wait与time_wait状态含义
题目描述 1.什么是三次握手,四次挥手?为什么分别要三次与四次? 2.tcp协议中,close_wait与time_wait状态分别代表什么含义,为什么要设计这两种状态,解决了什么问题? 3.time ...
- Java High Level REST Client 使用示例
概述 ES 在 7.0 版本开始将废弃 TransportClient,8.0 版本开始将完全移除 TransportClient,取而代之的是 High Level REST Client,官方文档 ...
- H5打开app指定页面(H5+app项目)
H5+app项目,在HBuilderX中设置 详情参考官方 https://ask.dcloud.net.cn/article/64 给h5+app设置scheme值,作用:在其它app和h5页面中启 ...
- JavaScript之运算符
(1)赋值运算符 // c+=1; // 相当于c=c+1; // console.log(a++); // 先将a的值赋值给表达式,a再加1 // console.log(++a); // a先加1 ...
- SqlServer中-char varchar nvarchar的区别
说说nvarchar和varchar的区别:的区别: varchar: 可变长度,存储ANSI字符,根据数据长度自动变化. nvarchar: 可变长度,存储Unicode字符,根据数据长度自动变化 ...
- [ipsec][strongswan] strongswan源码分析-- (二)rekey/reauth机制分析
目录 strongwan sa分析(二) 名词约定 rekey/reauth 机制分析 1 概述 2 reauth 3 CHILD SA rekey 4 IKE SA rekey 5 其他 stron ...
- 智能驾驶数据后处理分析利器—INTEWORK-VDA
随着智能驾驶技术在新车上逐步普及,车辆研发阶段需要做大量的实车测试工作,当前的测试方式主要是路采实车数据后,按标准和法规进行测试场景提取和测试数据分析.调查显示绝大部分智能驾驶研发厂商 ...