一、JDBC数据源案例

1、概述

Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。

这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,
对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。
而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。 Java版本
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "students");
DataFrame jdbcDF = sqlContext.read().format("jdbc"). options(options).load(); Scala版本
val jdbcDF = sqlContext.read.format("jdbc").options(
Map("url" -> "jdbc:mysql://spark1:3306/testdb",
"dbtable" -> "students")).load() 案例:查询分数大于80分的学生信息

#授权表权限
grant all on testdb.* to ''@'spark1' with grant option;
flush privileges;

2、准备数据

mysql> create database testdb;
mysql> use testdb; mysql> create table student_infos(name varchar(20), age integer); mysql> create table student_scores(name varchar(20), score integer); mysql> insert into student_infos values('leo', 18),('marry', 17),('jack', 19); mysql> insert into student_scores values('leo', 88),('marry', 99),('jack', 60); mysql> create table good_student_infos(name varchar(20), age integer, score integer);

3、java案例实现

package cn.spark.study.sql;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; import scala.Tuple2; /**
* JDBC数据源
* @author Administrator
*
*/
public class JDBCDataSource { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("JDBCDataSource");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); // 总结一下
// jdbc数据源
// 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame
// 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
// 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中 // 分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc")
.options(options).load(); options.put("dbtable", "student_scores");
DataFrame studentScoresDF = sqlContext.read().format("jdbc")
.options(options).load(); // 将两个DataFrame转换为JavaPairRDD,执行join操作
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.get(1))));
} })
.join(studentScoresDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(String.valueOf(row.get(0)),
Integer.valueOf(String.valueOf(row.get(1))));
} })); // 将JavaPairRDD转换为JavaRDD<Row>
JavaRDD<Row> studentRowsRDD = studentsRDD.map( new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() { private static final long serialVersionUID = 1L; @Override
public Row call(
Tuple2<String, Tuple2<Integer, Integer>> tuple)
throws Exception {
return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
} }); // 过滤出分数大于80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter( new Function<Row, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Row row) throws Exception {
if(row.getInt(2) > 80) {
return true;
}
return false;
} }); // 转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields); DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect();
for(Row row : rows) {
System.out.println(row);
} // 将DataFrame中的数据保存到mysql表中
// 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓存
studentsDF.javaRDD().foreach(new VoidFunction<Row>() { private static final long serialVersionUID = 1L; @Override
public void call(Row row) throws Exception {
String sql = "insert into good_student_infos values("
+ "'" + String.valueOf(row.getString(0)) + "',"
+ Integer.valueOf(String.valueOf(row.get(1))) + ","
+ Integer.valueOf(String.valueOf(row.get(2))) + ")"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null;
Statement stmt = null;
try {
conn = DriverManager.getConnection(
"jdbc:mysql://spark1:3306/testdb", "", "");
stmt = conn.createStatement();
stmt.executeUpdate(sql);
} catch (Exception e) {
e.printStackTrace();
} finally {
if(stmt != null) {
stmt.close();
}
if(conn != null) {
conn.close();
}
}
} }); sc.close();
} }

42、JDBC数据源案例的更多相关文章

  1. Tomcat中使用JNDI加载JDBC数据源

    以前写JDBC的时候总是手工写一个类,用硬代码写上className.url.用户名和密码什么的,然后通过DriverManager获取到Connection.那样写是很方便,但是如果想更改的话,需要 ...

  2. spring中配置jdbc数据源

    1.加入jdbc驱动器包,mysql-connector-java.jar 2.加入commons-dbcp.jar配置数据源 3.在classpath下新建文件jdbc.properties,配置j ...

  3. weblogic配置jdbc数据源

    weblogic配置jdbc数据源的过程 方法/步骤   启动weblogic 管理服务器,使用管理用户登录weblogic管理控制台   打开管理控制台后,在左侧的树形域结构中,选择服务->数 ...

  4. JDBC数据源 使用JNDI连接池实现数据库的连接

    0.引言 许多Web应用程序需要通过JDBC驱动程序访问数据库,以支持该应用程序所需的功能.Java EE平台规范要求Java EE应用程序服务器为此目的提供一个DataSource实现(即,用于JD ...

  5. JDBC数据源连接池(4)---自定义数据源连接池

    [续上文<JDBC数据源连接池(3)---Tomcat集成DBCP>] 我们已经 了解了DBCP,C3P0,以及Tomcat内置的数据源连接池,那么,这些数据源连接池是如何实现的呢?为了究 ...

  6. JDBC数据源连接池(3)---Tomcat集成DBCP

    此文续<JDBC数据源连接池(2)---C3P0>. Apache Tomcat作为一款JavaWeb服务器,内置了DBCP数据源连接池.在使用中,只要进行相应配置即可. 首先,确保Web ...

  7. JDBC数据源连接池(2)---C3P0

    我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...

  8. JDBC数据源(DataSource)数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用。

    JDBC数据源(DataSource)的简单实现   数据源技术是Java操作数据库的一个很关键技术,流行的持久化框架都离不开数据源的应用. 2.数据源提供了一种简单获取数据库连接的方式,并能在内部通 ...

  9. eclipse下jdbc数据源与连接池的配置及功能简介

    今天在做四则运算网页版的时候遇到了一个困惑,由于需要把每个产生的式子存进 数据库,所以就需要很多次重复的加载驱动,建立连接等操作,这样一方面写程序不方便,加大了程序量,另一方面,还有导致数据库的性能急 ...

随机推荐

  1. NetworkStream的使用(TcpClient,TcpListener)

    1.在tcp连接中,Networkstream可以重复读取,重复写入,不用关掉连接. 2.关掉NetworkStream会自动关闭掉Tcp连接 3.NetworkStream不需要使用Flush方法, ...

  2. flutter apk 打包

    https://blog.csdn.net/weixin_33738578/article/details/87998565 http://www.cnblogs.com/sangwl/p/10400 ...

  3. BUAAOO-Final-Summary

    目录 总结本单元两次作业的架构设计 总结自己在四个单元中架构设计及OO方法理解的演进 总结自己在四个单元中测试理解与实践的演进 总结自己的课程收获 立足于自己的体会给课程提三个具体改进建议 两次架构设 ...

  4. mysql 表关系 与 修改表结构

    目录 mysql 表关系 与 修改表结构 两张表关系 分析步骤 修改表结构 mysql 表关系 与 修改表结构 两张表关系 多对一 以员工和部门举例 多个员工对应一个部门 foreign key 永远 ...

  5. Python_Day2_共享你的代码

    一.编写简单的函数,保存一下. # coding=utf-8 """ 这是“nester.py”模块,提供了一个名为print_lol的函数,这个函数的作用是打印列表,其 ...

  6. 用java刷剑指offer(平衡二叉树)

    题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 牛客网链接 java代码 import java.lang.Math; public class Solution { public bool ...

  7. 钉钉、阿里云和PaaS平台的整合开发

    钉钉在企业移动办公领域有着很高的占有率,但是可能大家都会觉得,他在企业定制化,数据分析等领域有着很大的短板. 而我们的kintone作为PaaS平台,可以补足这个短板.很多开发者想知道如何利用钉钉还有 ...

  8. 访问stackoverflow非常慢

    其实GFW并没有限制访问stackoverflow,但是打开stackoverflow会非常慢. 解决方法是 打开host文件加入下面这句  127.0.0.1 ajax.googleapis.com ...

  9. java在win系统下的环境的搭建

    学习Java第一步是配置本地开发环境,学习最基本的桌面开发,下面以win7为例配置Java开发环境,安装JDK的时候会默认安装JRE,根据提示安装就可以了. 首先去官网下载适合系统版本的JDK,下载地 ...

  10. 实现多层DIV叠加的js事件穿透

    前几天做的一个功能:在地图上加载标注,这个标注是列表,就直接放的 DIV. 后来发现,当鼠标在这个标注上面的时候,滚动鼠标滚轮,地图的缩放功能失效. 想了下,应该是最上面的标注 DIV 拦截了滚轮滚动 ...