RMQ Range Minimum/Maximum Query 区间最值问题

树状数组

https://www.cnblogs.com/xenny/p/9739600.html
lowbit(x) x在二进制下(从右边起)第一个1的位置是k,返回的是\(2^k\);
比如8(1000)返回8; 7(0111) 返回1;
比如说要更新2这个点,首先2更新,然后2+lowbit(2)=4更新,然后4+lowbit(4)=8更新...
更新7这个点,首先7更新,然后7+lowbit(7)=8更新...
比如说要查询1-2的区间和,首先返回2的值,然后2-lowbit(2) = 0结束
比如要查询1-7的区间和,首先返回7的值,然后7-lowbit(7) = 6,然后6-lowbit(6) = 4,然后4-lowbit(4)=0结束

单点更新,区间查询

int a[maxn],t[maxn];        //原数组,树状数组

int lowbit(int x)
{
    return x&(-x);
}

void updata(int i,int k)        //在i的位置上加k
{
    while (i <= n)
    {
        t[i] += k;
        i += lowbit(i);
    }
}

int getsum(int i)           //求1-i区间的和
{
    int res = 0;
    while (i > 0)
    {
        res += t[i];
        i -= lowbit(i);
    }
    return res;
}

区间更新,单点查询

利用差分建树,1-i区间的的和就是i的值\(A[i] = \sum_{j=1}^i D[j]\)
[x,y]区间内加上k,因为是单点查询,只要求i的时候加到了k,就是正确的
updata(x,k); //加上k
updata(y+1,-k); //之后的减去k

区间更新,区间查询

i的前n项和\(\sum_{i=1}^n A[i] = \sum_{i=1}^n \sum_{j=1}^i D[j]\)
\(= n * D[1] + (n-1) * D[2] + (n-2) * D[3] + \cdots + D[i]\)
\(= n * A[n] - (0 * D[1] + 1 * D[2] + 2 * D[3] + \cdots + (n-1) * D[n])\)
所以\(\sum_{i=1}^n A[i] = n * \sum_{i=1}^n D[i] - \sum_{i=1}^{n} (D[i] * (i-1))\)
sum1[i] = D[i],sum2[i] = D[i]*(i-1);

int a[maxn],sum1[maxn],sum2[maxn];

int lowbit(int x){
    return x&(-x);
}

void updata(int i,int k){
    int x = i;    //因为x不变,所以得先保存i值
    while(i <= n){
        sum1[i] += k;
        sum2[i] += k * (x-1);
        i += lowbit(i);
    }
}

int getsum(int i){        //求前缀和
    int res = 0, x = i;
    while(i > 0){
        res += x * sum1[i] - sum2[i];
        i -= lowbit(i);
    }
    return res;
}

ST表

https://www.cnblogs.com/qq965921539/p/9608980.html
与线段树相比,预处理复杂度同为O(nlogn),查询时间上,ST表为O(1),线段树为O(nlogn)

int a[maxn],st[maxn][20];

void rmq(int n)            //建立st表
{
    for(int j = 1; (1<<j) <= n; j++)
        for(int i = 1; i+(1<<j)-1 <= n; i++)
            st[i][j] = min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}

int ask(int l,int r)        //询问l,r区间
{
    int k = log2(r-l+1);
    return min(st[l][k],st[r-(1<<k)+1][k]);
}

RMQ--树状数组,ST表,线段树的更多相关文章

  1. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  2. [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)

    这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...

  3. bzoj4785:[ZJOI2017]树状数组:二维线段树

    分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...

  4. HDU - 1166 树状数组模板(线段树也写了一遍)

    题意: 汉语题就不说题意了,用到单点修改和区间查询(树状数组和线段树都可以) 思路: 树状数组的单点查询,单点修改和区间查询. 树状数组是巧妙运用二进制的规律建树,建树就相当于单点修改.这里面用到一个 ...

  5. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  6. BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树

    题目链接 BZOJ 4785 题解 这道题真是令人头秃 = = 可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l ...

  7. 2019.01.21 bzoj2441: [中山市选2011]小W的问题(树状数组+权值线段树)

    传送门 数据结构优化计数菜题. 题意简述:给nnn个点问有多少个www型. www型的定义: 由5个不同的点组成,满足x1<x2<x3<x4<x5,x3>x1>x2 ...

  8. 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径

    51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...

  9. HDU 4325 离散化+树状数组 或者 不使用树状数组

    题意:给出一些花的开放时间段,然后询问某个时间点有几朵花正在开放. 由于ti<1e9,我们需要先将时间离散化,然后将时间点抽象为一个数组中的点,显然,我们需要进行区间更新和单点查询,可以考虑线段 ...

随机推荐

  1. xorm -Get方法实例

    查询单条数据使用Get方法,在调用Get方法时需要传入一个对应结构体的指针,同时结构体中的非空field自动成为查询的条件和前面的方法条件组合在一起查询 package main import ( & ...

  2. html input复选框的checked属性

    input --checked: 只要复选框有checked属性,不管属性值为空或者为true or false或任意值,复选框都会被选中.切忌:checked属性值不要带引号 <input t ...

  3. 作业调度框架Quartz.NET-现学现用-01-快速入门

    原文:作业调度框架Quartz.NET-现学现用-01-快速入门 前言 你需要应用执行一个任务吗?这个任务每天或每周星期二晚上11:30,或许仅仅每个月的最后一天执行.一个自动执行而无须干预的任务在执 ...

  4. Linux环境Ubuntu上安装GitLab

    本文主要介绍在Ubuntu[Ubuntu 18.04.3]上安装最新的GitLab版本控制工具. 一.安装更新GitLab所需要的依赖项 sudo apt-get update 下载过程中,网络要有所 ...

  5. Elasticsearch 及 Kibana 安装篇

    简介 官网-安装介绍 这里记载了各个软件包的安装方法,Linux Mac Windows-- 本文记载的是在 CentOS 系统安装 Elasticsearch 7.0.0 版本的步骤. 安装 Jav ...

  6. js实现用户输入日期算出是今年的第几天

    const rs = require("readline-sync"); // 根据用户输入的年月日输出第几天 // 欢迎 console.log("欢迎来到查询系统&q ...

  7. JavaScript 数组 遍历方法 map( ) 和 forEach( )

    let arr = [1, 3, 7, 6, 9]; 不用知道元素的个数,即不用设置开始下标和结束下标. 1:forEach( )会把数组中的每个值进行操作,没有返回值,undefined let j ...

  8. Jmeter学习笔记(十)——元件的作用域和执行顺序

    jmeter是一个开源的性能测试工具,它可以通过鼠标拖拽来随意改变元件之间的顺序以及元件的父子关系,那么随着它们的顺序和所在的域不同,它们在执行的时候,也会有很多不同. jmeter的test pla ...

  9. I、Mac 下的Vue

    Mac 下的Vue 1. 安装brew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/i ...

  10. Python——函数&作用域

    我们前面学的都是面向过程式的编程(代码从上到下写,并运行),而函数式编程是将繁杂的代码通过整理特性进行规整.像图书馆一样,将小说.教学.外文等书籍进行分类.让编程人员或看代码人员很容易的查看该段代码的 ...