一、前文介绍

Elasticsearch(简称ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Lucene 可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。注意,Lucene 只是一个库。想要发挥其强大的作用,你需使用 Java 并要将其集成到你的应用中。

Lucene 非常复杂,你需要深入的了解检索相关知识来理解它是如何工作的,就跟学习 springmvc 之前先从 servlet 开始,繁琐复杂的工作,Solor、Elasticsearch 应由而生, 其使用 Java 编写并使用 Lucene 来建立索引并实现搜索功能,但是它的目的是通过简单连贯的 RESTful API 让全文搜索变得简单并隐藏 Lucene 的复杂性。

重要特性:

  • 分布式的实时文件存储,每个字段都被索引并可被搜索
  • 实时分析的分布式搜索引擎
  • 可以扩展到上百台服务器,处理PB级结构化或非结构化数据

基本概念:

索引(indices)-------------------Databases 数据库
类型(type)----------------------Table 数据表
文档(Document)---------------Row 行
字段(Field)---------------------Columns 列

详细说明:

概念 说明
索引库(indices) indices是index的复数,代表许多的索引,
类型(type) 类型是模拟mysql中的table概念,一个索引库下可以有不同类型的索引,比如商品索引,订单索引,其数据格式不同。不过这会导致索引库混乱,因此未来版本中会移除这个概念
文档(document) 存入索引库原始的数据。比如每一条商品信息,就是一个文档
字段(field) 文档中的属性
映射配置(mappings) 字段的数据类型、属性、是否索引、是否存储等特性

要注意的是:Elasticsearch 本身就是分布式的,因此即便你只有一个节点,Elasticsearch 默认也会对你的数据进行分片和副本操作,当你向集群添加新数据时,数据也会在新加入的节点中进行平衡。

二、Elasticsearch安装[windows]

如下主要针对 windows 环境下的 Elasticsearch 学习。

下载地址:https://www.elastic.co/cn/products/

解压后,进入 bin/ 目录,双击执行 elasticsearch .bat

Elasticsearch 启动后可以看到绑定了两个端口:

  • 9300:集群节点间通讯接口【tcp连接方式,性能优于http】
  • 9200:客户端访问接口【接收http请求】

9200,我们可以通过浏览器直接访问,9300 则不可以直接访问。

三、Kibana 安装

Kibana 是一个基于 Node.js 的 Elasticsearch 索引库数据统计工具,可以利用 Elasticsearch 的聚合功能,生成各种图表,如柱形图,线状图,饼图等。

而且还提供了操作 Elasticsearch 索引数据的控制台,并且提供了一定的API提示,非常有利于我们学习 Elasticsearch 的语法。

1、配置

我们可以把 Kibana 当成,durid 连接池对于 mysql 的可视化来理解。

下载地址:https://www.elastic.co/cn/downloads/kibana

解压后,进入安装目录下的 config 目录,修改 kibana.yml 文件:

修改elasticsearch服务器的地址,去掉原来的注释:

elasticsearch.url: "http://localhost:9200"

Kibana 的监听端口为 5601:http://127.0.0.1:5601 浏览器打开如下图所示:

Dev Tools 相当于一个命令行窗口工具,带提示,Elasticsearch 执行的数据格式为 json,举例:

POST _analyze
{
  "analyzer": "ik_max_word",
  "text":     "我喜欢编程"
}

四、ik 分词器安装

由于 Elasticsearch 在拆分单词时,是按空格来分,即 hello world 分为 hello 和 world,这是没问题的,但是在拆分中文时也是按照一个汉字一个汉字来拆分。即“我喜欢编程”分为 我、喜、欢、编、程 5个字符,所以就需要用到 IK 分词器这个插件来进行拆分。

Lucene 的 IK 分词器早在 2012 年已经没有维护了,现在我们要使用的是在其基础上维护升级的版本,并且开发为 ElasticSearch 的集成插件了,与 Elasticsearch 一起维护升级,版本也保持一致。

IK下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases

注意 ES 与 IK 版本对应地址:https://github.com/medcl/elasticsearch-analysis-ik/tree/2.x

将 zip 包,解压到 Elasticsearch 目录的 plugins 目录中:

然后重启 Elasticsearch

五、基本概念-详细了解

上文也了解到 ES 操作的数据为 json,实际项目中,比如 springboot 中,无须操作 json,都是面向对象编程,但是,学习其实际原理固然重要。

5.1、创建索引

创建索引的请求格式:

  • 请求方式:PUT
  • 请求路径:/索引库名
  • 请求参数:json格式:
{
   "settings": {
      "number_of_shards": 3,
      "number_of_replicas": 2
   }
}
  • settings:索引库的设置
  • number_of_shards: 分片数量
  • number_of_replicas:副本数量

示例:

5.2、查看索引设置

语法

Get请求可以帮我们查看索引信息,格式:

GET /索引库名

5.3、删除索引

删除索引使用DELETE请求

语法

DELETE /索引库名

六、映射配置

6.1、创建映射字段

语法

请求方式依然是PUT

PUT /索引库名/_mapping/类型名称
{
  "properties": {
    "字段名": {
      "type": "类型",
      "index": true,
      "store": true,
      "analyzer": "分词器"
    }
  }
}
  • 类型名称:就是前面将的type的概念,类似于数据库中的不同表
    字段名:任意填写 ,可以指定许多属性,例如:
  • type:类型,可以是text、long、short、date、integer、object等
  • index:是否索引,默认为true
  • store:是否存储,默认为false
  • analyzer:分词器,这里的ik_max_word即使用ik分词器

示例

发起请求:

PUT niceyoo2/_mapping/goods
{
  "properties": {
    "title": {
      "type": "text",
      "analyzer": "ik_max_word"
    },
    "images": {
      "type": "keyword",
      "index": "false"
    },
    "price": {
      "type": "float"
    }
  }
}

响应结果:

{
  "acknowledged": true
}
6.2、查看映射关系

语法:

GET /索引库名/_mapping

示例:

GET /niceyoo2/_mapping

响应:

{
  "niceyoo2": {
    "mappings": {
      "goods": {
        "properties": {
          "images": {
            "type": "keyword",
            "index": false
          },
          "price": {
            "type": "float"
          },
          "title": {
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    }
  }
}

七、字段属性详解

7.1、type

Elasticsearch 中支持的数据类型非常丰富:

我们说几个关键的:

String类型,又分两种:

  • text:可分词,不可参与聚合
  • keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合

Numerical:数值类型,分两类:

  • 基本数据类型:long、interger、short、byte、double、float、half_float
  • 浮点数的高精度类型:scaled_float
    • 需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。

Date:日期类型

elasticsearch 可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为 long,节省空间。

7.2、index

index影响字段的索引情况。

  • true:字段会被索引,则可以用来进行搜索。默认值就是true
  • false:字段不会被索引,不能用来搜索

index的默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。

但是有些字段是我们不希望被索引的,比如商品的图片信息,就需要手动设置index为false。

7.3、store

是否将数据进行额外存储。

在学习lucene和solr时,我们知道如果一个字段的store设置为false,那么在文档列表中就不会有这个字段的值,用户的搜索结果中不会显示出来。

但是在Elasticsearch中,即便store设置为false,也可以搜索到结果。

原因是Elasticsearch在创建文档索引时,会将文档中的原始数据备份,保存到一个叫做_source的属性中。而且我们可以通过过滤_source来选择哪些要显示,哪些不显示。

而如果设置store为true,就会在_source以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。

7.4、boost

激励因子,这个与lucene中一样

其它的不再一一讲解,用的不多,大家参考官方文档:

最后

下篇带大家详细了解 elasticsearch 中的

  • 增:随机id、自定义id
  • 删:带条件删除
  • 改:带条件修改
  • 查:带条件查询

推荐阅读:

重温Elasticsearch:https://www.cnblogs.com/niceyoo/p/11329426.html

elasticsearch集群搭建-windows:https://www.cnblogs.com/niceyoo/p/11343697.html

基于Docker方式实现Elasticsearch集群:https://www.cnblogs.com/niceyoo/p/11342903.html

18年专科毕业后一度迷茫,创建了一个用来记录自己成长的公众号,感兴趣的小伙伴可以关注一下~

了解一下Elasticsearch的基本概念的更多相关文章

  1. elasticsearch的核心概念

    1.elasticsearch的核心概念 (1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒):基于es执行搜索和分析可以达到秒级 (2) ...

  2. Elasticsearch系列---Elasticsearch的基本概念及工作原理

    基本概念 Elasticsearch有几个核心的概念,花几分钟时间了解一下,有助于后面章节的学习. NRT Near Realtime,近实时,有两个层面的含义,一是从写入一条数据到这条数据可以被搜索 ...

  3. 写给大忙人的Elasticsearch架构与概念(未完待续)

    最新版本官方文档https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html文档增删改参考https://www ...

  4. 图解Elasticsearch的核心概念

    本文讲解大纲,分8个核心概念讲解说明: NRT Cluster Node Document&Field Index Type Shard Replica Near Realtime(NRT)近 ...

  5. ElasticSearch入门-基本概念介绍以及安装

    Elasticsearch基本概念 Elasticsearch是基于Lucene的全文检索库,本质也是存储数据,很多概念与传统关系型数据库类似. 传统关系型数据库与Elasticsearch进行概念对 ...

  6. elasticsearch常用的概念整理

    节点node 节点(node)是一个运行着的Elasticsearch实例 集群中一个节点会被选举为主节点(master),它将临时管理集群级别的一些变更,例如新建或删除索引.增加或移除节点等.主节点 ...

  7. elasticsearch中的概念简述

    Near Realtime(NRT) Elasticsearch接近实时.从为一个文档建立索引到可被搜索,正常情况下有1秒延迟. Cluster 一个集群有一个唯一的名字,默认是"elast ...

  8. Elasticsearch的基本概念和指标

    背景 在13年的时候,我开始负责整个公司的搜索引擎.嗯……,不是很牛的那种大项目负责人.而是整个搜索就我一个人做.哈哈. 后来跳槽之后,所经历的团队都用Elasticsearch,基本上和缓存一样,是 ...

  9. 【elasticsearch】关于elasticSearch的基础概念了解【转载】

    转载原文:https://www.cnblogs.com/chenmc/p/9516100.html 该作者本系列文章,写的很详尽 ================================== ...

随机推荐

  1. SQL SERVER 数据库查询表信息

    SELECT 表名 then d.name else '' end, 表说明 then isnull(f.value,'') else '' end, 字段序号 = a.colorder, 字段名 = ...

  2. 阿里巴巴 Java 开发手册 (六) 并发处理

    1. [强制]获取单例对象需要保证线程安全,其中的方法也要保证线程安全. 说明:资源驱动类.工具类.单例工厂类都需要注意. 2. [强制]创建线程或线程池时请指定有意义的线程名称,方便出错时回溯. 正 ...

  3. netcore 实现跨应用的分布式session

    需求场景 网站a,域名为 a.site.com 网站b, 域名为 b.site.com 需要在a.b两个站点之间共享session 解决方案 使用redis作为分布式缓存存储 设置sessionId ...

  4. C# vb .net实现大小调整特效滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的大小调整效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...

  5. window 包管理器--Chocolatey

    Chocolatey 介绍 在 Linux 下,大家喜欢用 apt-get 来安装应用程序,如今在 windows 下,大家可以使用 Chocolatey 来快速下载搭建一个开发环境. Chocola ...

  6. vsftp 安装配置(被动模式)

    vi /etc/vsftpd/vsftpd.conf vsftp配置末尾添加 pasv_enable=YES pasv_min_port=10000 pasv_max_port=10030 防火墙端口 ...

  7. 五 查询数据SELECT   一、单表查询

    一 单表查询的语法 二 关键字的执行优先级 三 简单查询 四 WHERE约束 五 分组查询:GROUP BY 六 HAVING过滤 七 查询排序:ORDER BY 八 限制查询的记录数:LIMIT 九 ...

  8. 提取线条的lines_color、lines_facet、 lines_gauss算子

    Halcon中线条提取的算子主要有: lines_color(Image : Lines : Sigma, Low, High, ExtractWidth, CompleteJunctions : ) ...

  9. MyBatis 中如何调用 Java 的 enum (枚举) 字段

    事先作成一 enum,如下: public enum CityCode { ALL("000"), BEIJING("010"), SHANGHAI(" ...

  10. 分布式数据库中间件、产品——sharding-jdbc、mycat、drds

    一般对于业务记录类随时间会不断增加的数据,当数据量增加到一定量(一般认为整型值为主的表达到千万级,字符串为主的表达到五百万)的时候,性能将遇到瓶颈,同时调整表结构也会变得非常困难.为了避免生产遇到这样 ...