洛谷P1472 奶牛家谱 Cow Pedigrees
P1472 奶牛家谱 Cow Pedigrees
- 102通过
- 193提交
- 题目提供者该用户不存在
- 标签USACO
- 难度普及+/提高
提交 讨论 题解
最新讨论
- 暂时没有讨论
题目描述
农民约翰准备购买一群新奶牛。 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛。这些奶牛间的关系可以用二叉树来表示。这些二叉树总共有N个节点(3 <= N < 200)。这些二叉树有如下性质:
每一个节点的度是0或2。度是这个节点的孩子的数目。
树的高度等于K(1 < K < 100)。高度是从根到最远的那个叶子所需要经过的结点数; 叶子是指没有孩子的节点。
有多少不同的家谱结构? 如果一个家谱的树结构不同于另一个的, 那么这两个家谱就是不同的。输出可能的家谱树的个数除以9901的余数。
输入输出格式
输入格式:
两个空格分开的整数, N和K。
输出格式:
一个整数,表示可能的家谱树的个数除以9901的余数。
输入输出样例
5 3
2
说明
翻译来自NOCOW
USACO 2.3
分析:很显然求方案数选择dp,关键是怎么dp呢?可以从题目中得知影响结果的只有节点数和高度了,那么设f[i][j]为高度为i,节点数为j的二叉树的个数,怎么转移呢?很显然是从它的左右子树上转移过来的,二叉树的方案数=左子树的方案数*右子树的方案数,对于节点的个数,左子树+右子树的和是一定的,所以我们枚举一个子树的节点个数那么另一个子树的节点个数就出来了,如果要构成高度为i的二叉树,那么左右子树中至少要有一个高度为i-1的,那么就要分3中情况讨论,一个是i-1,一个比i-1小;两个都是i-1,将3种情况的方案数加起来就可以了.那么怎么求比i-1小的方案数呢?可以类比noip2015子串,利用前缀和原理,比i-1小就是把比i-2小的加上i-1的即可,这个操作可以在推算f数组的时候进行.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std;
const int mod = ;
int f[][],n,k,t[][]; int main()
{
scanf("%d%d", &n, &k);
f[][] = ;
for (int i = ; i <= k; i++)
for (int j = ; j <= n; j++)
{
for (int p = ; p < j; p++)
{
f[i][j] = (f[i][j] + t[i - ][p] * f[i - ][j - p - ]) % mod;
f[i][j] = (f[i][j] + t[i - ][j - p - ] * f[i - ][p]) % mod;
f[i][j] = (f[i][j] + f[i - ][p] * f[i - ][j - p - ]) % mod;
}
t[i - ][j] = (t[i - ][j] + f[i - ][j]) % mod;
}
printf("%d\n", f[k][n]); return ;
}
洛谷P1472 奶牛家谱 Cow Pedigrees的更多相关文章
- 洛谷 P1472 奶牛家谱 Cow Pedigrees 题解
题面 这道题我觉得是个不错的题: 根据题意可以较清晰的发现ans只和n和k有关:(因为输入的只有这两个数啊~): 那么设f[i][j]表示前i层用了j个节点的方案数,g[i][j]表示深度小于等于i并 ...
- 洛谷 1472 奶牛家谱 Cow Pedigrees
[题解] DP题,我们用f[i][j]表示有n个节点.高度小于等于j的二叉树的个数.f[i][j]=sigma(f[t][j-1]*f[i-t-1][j-1]) t是1~i-1范围内的奇数. #inc ...
- P1472 奶牛家谱 Cow Pedigrees
题意:问你指定二叉树有几种 1.高度为k 2.节点数为n 3.每个点的度为0或2 爆搜------->30分QAQ 首先,因为每个节点度为0或2, 所以如果n是偶数直接输出0就行了吧(嘿嘿) 如 ...
- 【dp】奶牛家谱 Cow Pedigrees
令人窒息的奶牛题 题目描述 农民约翰准备购买一群新奶牛. 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛.这些奶牛间的关系可以用二叉树来表示.这些二叉树总共有N个节点(3 <= N < ...
- USACO Section 2.3 奶牛家谱 Cow Pedigrees
OJ:http://www.luogu.org/problem/show?pid=1472 #include<iostream> using namespace std; const in ...
- [luoguP1472] 奶牛家谱 Cow Pedigrees(DP)
传送门 一个深度为i的树可以由一个根节点外加两个深度为i-1的树组成,这就决定了DP该怎么写. 然而我真的没有想到. f[i][j]表示深度为i节点数为j的个数 sum[i][j]表示深度小于等于i节 ...
- 洛谷2344 奶牛抗议(DP+BIT+离散化)
洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...
- 洛谷P2402 奶牛隐藏
洛谷P2402 奶牛隐藏 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地. ...
- [洛谷P1842] 奶牛玩杂技
题目类型:贪心+证明,经典题 传送门:>Here< 题意:有\(N\)头奶牛,每个奶牛有一个重量\(W[i]\),力量\(S[i]\).定义每个奶牛的压扁程度为排在它前面的所有奶牛的总量之 ...
随机推荐
- Linux环境变量文件environment, profile, bashrc含义
转自:http://www.th7.cn/system/lin/201508/127503.shtml (1)/etc/profile: 此文件为系统的每个用户设置环境信息,当用户第一次登录时,该文件 ...
- Android SDK的docs访问速度很慢(新)
#设置环境变量 名称:ANDROID_SDK_HOME 值:我的为-->E:\android\android-sdk #代码编译及运行 1.把下面的代码保存为:AndroidDocRepair. ...
- PHP之单例模式的实现
单例模式: 单例模式又称职责模式:简单的说,一个对象(在学习设计模式之前,需要比较了解面向对象思想)只负责一个特定的任务: 单例类: 1.构造函数需要标记为private(访问控制:防止外部代码使用n ...
- PHP 打印调用函数入口地址(堆栈)
今天网站出现一个BUG,然后直接在数据库类里面写日志,看是哪条SQL出了问题,SQL语句到是找到了,但是不知道这条SQL语句来自何处,于是就想啊,如果能有一个办法,查看当前正在运行的这个方法是被哪个方 ...
- 一个原生的JavaScript拖动方法
代码: 1 function drag(t,p){ 2 3 var point = p || null, 4 target = t || null, 5 resultX = 0, 6 resultY ...
- HDU - 5685 Problem A(逆元)
这题我第一次想的就是直接模拟,因为我是这样感觉的,输入n是3次方,长度是5次方,加起来才8次方,里面的操作又不复杂,感觉应该能过,然而不如我所料,TLE了,玛德,这是第一次的代码. #include ...
- linux命令(6)crontab的用法和解析
一,写入格式: * * * * * command minute hour day month week command 其中: minute: 表示分钟,可以是从0到59之间 ...
- code md5
using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptograph ...
- rails 配置使用mysql
1 在gemfile中要添加 gem 'mysql2' 2 在mysql数据库中创建三个数据库 dept_dev dept_test dept_pro 3 配置文件 default: &def ...
- C++学习20 虚基类详解
多继承时很容易产生命名冲突,即使我们很小心地将所有类中的成员变量和成员函数都命名为不同的名字,命名冲突依然有可能发生,比如非常经典的菱形继承层次.如下图所示: 类A派生出类B和类C,类D继承自类B和类 ...