Arithmetic Progressions

Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can choose three numbers such that they are three consecutive terms of an arithmetic progression.

Meaning that, how many triplets (i, j, k) are there such that 1 ≤ i < j < k ≤ Nand Aj - Ai = Ak - Aj.

So the triplets (2, 5, 8), (10, 8, 6), (3, 3, 3) are valid as they are three consecutive terms of an arithmetic
progression. But the triplets (2, 5, 7), (10, 6, 8) are not.

Input

First line of the input contains an integer N (3 ≤ N ≤ 100000). Then the following line contains N space separated integers A1, A2, …, AN and they have values between 1 and 30000 (inclusive).

Output

Output the number of ways to choose a triplet such that they are three consecutive terms of an arithmetic progression.

Example

Input:
10
3 5 3 6 3 4 10 4 5 2 Output:
9

Explanation

The followings are all 9 ways to choose a triplet

1 : (i, j, k) = (1, 3, 5), (Ai, Aj, Ak) = (3, 3, 3)
2 : (i, j, k) = (1, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
3 : (i, j, k) = (1, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)
4 : (i, j, k) = (3, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
5 : (i, j, k) = (3, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)
6 : (i, j, k) = (4, 6, 10), (Ai, Aj, Ak) = (6, 4, 2)
7 : (i, j, k) = (4, 8, 10), (Ai, Aj, Ak) = (6, 4, 2)
8 : (i, j, k) = (5, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
9 : (i, j, k) = (5, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)

题解:

    考虑分块,分成block块

    假设三个点都在同一块,那么我们就在一块内暴力,复杂度block * ( n/block)  * (n/block)

    假设其中两个点在同一块,那么枚举其中一块的两个点算答案,block * n/block * n/block

  ·  假设三个点都不在同一块,枚举中间点属于的那一块 剩下左边和右边进行 FFT, 复杂度block * (n*logn)

    

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 3e5+, M = 1e6+, mod = 1e9+,inf = 2e9; struct Complex {
double r , i ;
Complex () {}
Complex ( double r , double i ) : r ( r ) , i ( i ) {}
Complex operator + ( const Complex& t ) const {
return Complex ( r + t.r , i + t.i ) ;
}
Complex operator - ( const Complex& t ) const {
return Complex ( r - t.r , i - t.i ) ;
}
Complex operator * ( const Complex& t ) const {
return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
}
} ; void FFT ( Complex y[] , int n , int rev ) {
for ( int i = , j , t , k ; i < n ; ++ i ) {
for ( j = , t = i , k = n >> ; k ; k >>= , t >>= ) j = j << | t & ;
if ( i < j ) swap ( y[i] , y[j] ) ;
}
for ( int s = , ds = ; s <= n ; ds = s , s <<= ) {
Complex wn = Complex ( cos ( rev * * pi / s ) , sin ( rev * * pi / s ) ) , w ( , ) , t ;
for ( int k = ; k < ds ; ++ k , w = w * wn ) {
for ( int i = k ; i < n ; i += s ) {
y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
y[i] = y[i] + t ;
}
}
}
if ( rev == - ) for ( int i = ; i < n ; ++ i ) y[i].r /= n ;
}
Complex s[N],t[N]; LL cnt[][];
int a[N];
int n,block,pos[N];
LL vis[N];
int main() {
while(scanf("%d",&n)!=EOF) {
block = ;
for(int i = ; i <= n; ++i)
pos[i] = (i-)/block + ;
int mx = -;
for(int i = ; i <= pos[n]; ++i)
for(int j = ; j <= ; ++j) cnt[i][j] = ;
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
mx = max(mx,a[i]);
cnt[pos[i]][a[i]]++;
} for(int i = ; i <= mx; ++i) {
for(int j = ; j <= pos[n]; ++j) {
cnt[j][i] += cnt[j-][i];
}
}
int len = ;
while(len <= *mx) len<<=;
LL ans = ;
for(int k = ; k <= pos[n]; ++k) {
for(int i = (k-)*block + ; i <= min(k*block,n); ++i) {
for(int j = i + ; j <= min(k*block,n); ++j) {
if(*a[i] - a[j] >= && *a[i] - a[j] <= mx)
ans += cnt[k-][*a[i] - a[j]] + vis[*a[i]-a[j]];
if(*a[j] - a[i] >= && *a[j] - a[i] <= mx)
ans += cnt[pos[n]][*a[j] - a[i]] - cnt[k][*a[j] - a[i]];
}
vis[a[i]] += ;
}
for(int i = (k-)*block + ; i <= min(k*block,n); ++i) {
vis[a[i]] = ;
} for(int j = ; j <= mx; ++j)
s[j] = Complex(cnt[k-][j],);
for(int j = mx+; j < len; ++j) s[j] = Complex(,); for(int j = ; j <= mx; ++j)
t[j] = Complex(cnt[pos[n]][j] - cnt[k][j] , );
for(int j = mx+; j < len; ++j) t[j] = Complex(,); FFT(s,len,);FFT(t,len,);
for(int j = ; j < len; ++j) s[j] = s[j] * t[j];
FFT(s,len,-); for(int j = ; j <= mx; ++j) {
LL tmp = (LL)(s[*j].r + 0.5);
ans += tmp*(cnt[k][j] - cnt[k-][j]);
}
}
printf("%lld\n",ans); }
return ;
}

  

CodeChef - COUNTARI FTT+分块的更多相关文章

  1. [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)

    [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...

  2. BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】

    题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...

  3. bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]

    3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...

  4. BZOJ 3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 250[Submit][S ...

  5. BZOJ3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 85[Submit][St ...

  6. CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)

    题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...

  7. BZOJ 3509 [CodeChef] COUNTARI ——分块 FFT

    分块大法好. 块内暴力,块外FFT. 弃疗了,抄SX队长$silvernebula$的代码 #include <map> #include <cmath> #include & ...

  8. CodeChef FNCS (分块+树状数组)

    题目:https://www.codechef.com/problems/FNCS 题解: 我们知道要求区间和的时候,我们用前缀和去优化.这里也是一样,我们要求第 l 个函数到第 r 个函数 [l, ...

  9. CodeChef - COUNTARI Arithmetic Progressions (FFT)

    题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...

随机推荐

  1. HDU-5319 Painter,深搜标记!

    Painter 题意:有一个棋盘n行,列数不超过50,用red和blue给这个棋盘涂色,每个格子每种颜色最多涂一次,如果两种颜色都涂了则该格子颜色为Green;red以斜杠'\'方式涂色,bule以' ...

  2. PTA 09-排序1 排序 (25分)

    题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/720 5-12 排序   (25分) 给定NN个(长整型范围内的)整数,要求输出从小到大 ...

  3. tomcat的安装和优化

    tomcat的安装 jdk版本安装 #!/bin/bash # desc: jdk安装脚本1. 1.7 1.8 download_url='http://**************' jdk_env ...

  4. BZOJ3130 [Sdoi2013]费用流 【网络流 + 二分】

    题目 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每 ...

  5. Nastya Studies Informatics

    Nastya Studies Informatics   time limit per test 1 second   memory limit per test 256 megabytes   in ...

  6. python生成器及迭代器

    一.迭代器 迭代器是访问集合元素的一种方式 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 迭代器有两个基本的方法: ...

  7. 标准C程序设计七---01

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  8. R 包安装、载入和卸载

    生物上的一些包可以这样安装 source("https://bioconductor.org/biocLite.R") biocLite("affy") 一般的 ...

  9. T1079 回家 codevs

    http://codevs.cn/problem/1079/ 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver~死坑 题目描述 Description 现在是晚 ...

  10. Tomcat7/8开启WebDAV的支持

    WebDAV是一种超文本传输协议,Tomcat默认是支持WebDAV的,且默认为禁用状态. 更多详细信息,请参考: https://zh.wikipedia.org/wiki/WebDAV http: ...