https://scut.online/p/261

由于M不是质数,要用扩展欧几里得求逆元,而不是费马小定理!

由于M不是质数,要用扩展欧几里得求逆元,而不是费马小定理!

由于M不是质数,要用扩展欧几里得求逆元,而不是费马小定理!

最后小心逆元是负数的情况。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
int A[maxn][maxn],C[maxn][maxn],n,m;
inline void ex_gcd(ll a,ll b,ll&x,ll&y,ll&d)
{
if(!b){d=a;x=;y=;return;}
ex_gcd(b,a%b,y,x,d);
y-=x*(a/b);
return;
}
inline void solve()
{
ll inv,y,d;ex_gcd(,m,inv,y,d);
inv=(inv+m)%m;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
C[i][j]=(A[i][j]-A[j][i]+m)%m*inv%m;
C[j][i]=(m-C[i][j])%m;
}
}
return;
}
int main()
{
#ifdef local
freopen("a.txt","r",stdin);
#endif // local
while(~scanf("%d%d",&n,&m))
{
memset(C,,sizeof(C));
for(int i=;i<n;i++){
for(int j=;j<n;j++){
scanf("%d",&A[i][j]);
A[i][j]%=m;
}
}
if(m>) solve();
for(int i=;i<n;i++){
for(int j=;j<n;j++){
printf("%d%c",C[i][j],j==n-?'\n':' ');
}
}
}
return ;
}

SCUT - 261 - 对称与反对称 - 构造 - 简单数论的更多相关文章

  1. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  2. Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...

  3. (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)

    题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...

  4. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  5. TensorflowTutorial_一维数据构造简单CNN

    使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网 ...

  6. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  7. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  8. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  9. Help Hanzo (LightOJ - 1197) 【简单数论】【筛区间质数】

    Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has ...

随机推荐

  1. 更改Tomcat命令行窗体标题

     在windows下启动多个tomcat时.不好区分哪个tomcat相应哪个服务,能够通过下面方法设置Tomcat命令行窗体的标题: 1.在%tomcat_home%\bin\catalina.b ...

  2. Linux学习系列之Iptables

    iptables命令是Linux上常用的防火墙软件,是netfilter项目的一部分.可以直接配置,也可以通过许多前端和图形界面配置. 语法 iptables(选项)(参数) 选项 -t<表&g ...

  3. ARM汇编指令MCR/MRC学习

    MCR指令将ARM处理器的寄存器中的数据传送到协处理器的寄存器中.假设协处理器不能成功地运行该操作.将产生没有定义的指令异常中断. 指令的语法格式: MCR{<cond>} p15, 0, ...

  4. c++ string 之 find_first_not_of 源码

    一:实现之前先说一所find_first_not_of姊妹函数() (1)find_first_of(string &str, size_type index = 0):(find_first ...

  5. 还在为开发APP发愁? 这里就有现成通用的代码!

    1.开源控件 1)首页: 1.1)首先是下拉刷新数据的 SwipeRefreshLayout 地址:https://github.com/hanks-zyh/SwipeRefreshLayout 1. ...

  6. adb4robotium跨进程框架抛出InputStream cannot be null的异常的解决方案

    转自:http://blog.csdn.net/qingchunjun/article/details/43448371 之前我写的关于利用adb框架来进行robotium跨进程操作的文章中,有些朋友 ...

  7. bash shell和进程

    1 exec builtin 不创建子shell,在原进程的上启动新的脚本,但是它会把老shell的环境清理掉,所以,它从原shell中什么也不继承,在一个干净的环境中执行新的脚本.执行完之后退出当前 ...

  8. filter、servlet、interceptor的执行顺序

    1. Filter可认为是Servlet的一种“变种”,它主要用于对用户请求进行预处理,也可以对HttpServletResponse进行后处理,是个典型的处理链.它与Servlet的区别在于:它不能 ...

  9. 在Qt Creator中为Qt工程添加资源

    1.右键单击工程 -> Add New ... -> Qt -> Qt Resource File -> Choose... -> Name: -> Next -& ...

  10. Window XP安装Ubuntu14.04实现Samba文件共享

    安装了Ubuntu14.04之后,在虚拟机设置里设置了文件共享.但在mnt文件夹下没有hgfs这个文件夹.依照网上说的去做还是不行,仅仅好放弃.改用samba实现Windows与Ubuntu文件共享. ...