Factorial numbers are getting big very soon, you'll have to compute the number of divisors of such highly composite numbers.

Input

The first line contains an integer T, the number of test cases.
On the next T lines, you will be given two integers N and M.

Output

Output T lines, one for each test case, with the number of divisors of the factorial of N.
Since the answer can get very big, output it modulo M.

Example

Input:
3
2 1000
3 11
4 5
Output:
2
4
3

Constraints

0 < T < 5432
1 < N < 10^8
1 < M < 10^9

For N, M : uniform random input in the range.
One input file.

题意:  T组数据 给定N,M ; 求N的阶乘的因子个数 , 结果模M .

思路:   对于求某个数的因子个数 , 我们知道是唯一分解为素数 ,表示为素数的幂的乘积形式a1^p1*a2^p2... 然后结果就是所有(p1+1)*(p2+1)...的乘积.

但是这里的N的阶乘过大,  而且多组询问, T也过大 ,而且需要模不同的M (即可能不能离线求).

考虑到对于大于10000的素数  最多除一次 所以单独考虑 即把前面1229个素数和后面第1230个素数到最后一个素数分开考虑  :前面的暴力除,复杂度1229*logN

后面部分分块 把除数相同的合并. 然后快速幂, 复杂度logN*logN

所以最后的复杂度是O(T*1230*logN)

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e8;
const int Mod=1e9+;
int p[],vis[maxn+],cnt;
void prime()
{
for(int i=;i<=maxn;i++){
if(!vis[i]) p[++cnt]=i;
for(int j=;j<=cnt&&(ll)i*p[j]<=maxn;j++){
vis[i*p[j]]=;
if(!(i%p[j])) break;
}
}
}
int qpow(int a,int x,int M){
int res=;
while(x){
if(x&) res=(ll)res*a%M;
a=(ll)a*a%M; x>>=;
} return res;
}
int main()
{
int T,i,j,x,M,pos,ans;
prime(); scanf("%d",&T);
for(i=;i<=T;i++){
ans=; scanf("%d%d",&x,&M);
for(j=;j<&&p[j]<=x;j++){ //暴力部分
int tmp=x,num=;
while(tmp){
num+=tmp/p[j]; tmp/=p[j];
}
ans=(ll)ans*(num+)%M;
}
pos=upper_bound(p+,p+cnt+,x)-p; pos--;
int fcy;
for(j=;j<=pos;j=fcy+){ //合并部分
fcy=upper_bound(p+,p+cnt+,x/(x/p[j]))-p; fcy--;
if(fcy>pos) fcy=pos;
ans=(ll)ans*qpow(x/p[j]+,fcy-j+,M)%M;
}
printf("%d\n",ans);
}
return ;
}

SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)的更多相关文章

  1. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

  2. HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化

    分析(官方题解): 一点感想: 首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了 吐槽自己手速慢,但是发了题解后 ...

  3. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  4. codevs 2606 约数和(分块优化数学公式 )

    题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...

  5. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  6. [bzoj2301]Problem b莫比乌斯反演+分块优化

    题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...

  7. Codeforces 1129D - Isolation(分块优化 dp)

    Codeforces 题目传送门 & 洛谷题目传送门 又独立切了道 *2900( 首先考虑 \(dp\),\(dp_i\) 表示以 \(i\) 为结尾的划分的方式,那么显然有转移 \(dp_i ...

  8. BZOJ 1257 余数之和sum(分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46954 题意:f(n, k)=k mod 1 + k mod 2 ...

  9. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

随机推荐

  1. 用“道”的思想解决费用流问题---取/不取皆是取 (有下界->有上界) / ACdreamoj 1171

    题意: 给一个矩阵,给出约束:i(0<i<n)行至少去ai个数,j行至少取bi个数,要求取的数值之和最小. 开始一见,就直接建了二分图,但是,发现这是有下界无上界最小费用流问题,肿么办.. ...

  2. bzoj2555(lct维护sam)

    题意: (1):在当前字符串的后面插入一个字符串 (2):询问字符串s在当前字符串中出现了几次?(作为连续子串) 字符串长度<=6e5,询问总长度<=3e6 分析: 考虑建个sam,然后把 ...

  3. ACM用到的算法。先做个笔记,记一下

    ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 ...

  4. Tar压缩文件

    [root@test /root]# tar [-zxcvfpP] filename   [root@test /root]# tar -N 'yyyy/mm/dd' /path -zcvf targ ...

  5. SQL经常使用语法

    一.基础 1.创建数据库 CREATE DATABASE database-name 2.删除数据库 drop database dbname 3.备份sql server --- 创建 备份数据的 ...

  6. BeagleBone Black Industrial 杂谈

    前言 原创文章,转载引用务必注明链接.水平有限一己拙见,欢迎指正. 本文使用markdown写成,为获得更好的阅读体验,推荐访问我的博客原文: ​ 初版BeagleBone Black(Rev A4) ...

  7. Classification and logistic regression

    logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...

  8. java开始到熟悉70-71

    本次内容:file类 package array; /** * file类 */ import java.io.File; import java.io.IOException; public cla ...

  9. C#语言 数组

  10. C#高级编程六十九天----DLR简介 .在.NET中使用DLR(转载) 我也来说说Dynamic

    DLR 一.近年来,在TIOBE公司每个月发布的编程语言排行榜中,C#总是能挤进前十名,而在最近十年来,C#总体上呈现上升的趋势.C#能取得这样的成绩,有很多因素,其中它在语言特性上的锐意进取让人印象 ...