HDU 4418 高斯消元解决概率期望
题目大意:
一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望
因为每个位置都跟后m个位置的数学期望有关
E[i] = sigma((E[i+j]+j)*P[j])
我们需要将模型转化一下,本来路径为012345这样,因为来回走,我们多定义n-2个点就是 0123454321然后利用取模就可以不断找到下一组相关的m个点
列出多元方程组,利用高斯消元解决问题
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
const int N = ;
#define eps 1e-8 double a[N][N] , x[N] , p[N] , sum;
int n,m,st,en,dire;
int id[N] , cnt;//cnt记录需要求解的未知数个数 queue<int> q;
bool bfs()
{
memset(id , - , sizeof(id));
cnt = ;
id[st] = cnt++;
q.push(st);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i= ; i<=m ; i++){
int v = (u+i)%n;
if(fabs(p[i])<eps || id[v]>=) continue;
id[v] = cnt++;
q.push(v);
}
}
return id[en]>= || id[n-en]>=; //终点有两个
}
//建立多元方程组
void build()
{
memset(a , , sizeof(a));
for(int i= ; i<n ; i++){
if(id[i] < ) continue;
int u=id[i];
a[u][u] = ;
if(u == id[en] || u == id[n-en]) {a[u][cnt]=;continue;}
for(int j= ; j<=m ; j++){
int v = (i+j)%n;
if(id[v]<) continue;
v = id[v];
a[u][v] -= p[j];
a[u][cnt] += p[j]*j;
}
}
/* for(int i=0 ; i<n ; i++)
{
for(int j=0 ; j<=n ; j++)
cout<<a[i][j]<<" ";
cout<<endl;
}*/
} int gauss(int n)
{
int i,j,k;
for(i=,j= ; i<n&&j<n ; j++){
for(k=i ; k<n ; k++)
if(fabs(a[k][j])>=eps) break;
if(k<n){
if(i!=k){
for(int r=j ; r<=n ; r++)
swap(a[i][r],a[k][r]);
}
double tt=1.0/a[i][j];
for(int r=j ; r<=n ; r++)
a[i][r]*=tt;
for(int r= ; r<n ; r++) //这从 0~n ,整个2重循环相当于消去和回代同时操作
if(r!=i){
for(int t=n ; t>=j ; t--) //一定是递减序
a[r][t] -= a[r][j]*a[i][t];
}
i++;
}
}
//检查是否还有未满足的方程式
for(int r=i ; r<n ; r++)
if(fabs(a[r][n])>=eps)
return ;
return ;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in" , "r" , stdin);
#endif // ONLINE_JUDGE
int T;
scanf("%d" , &T);
while(T--)
{
scanf("%d%d%d%d%d" , &n , &m , &en , &st , &dire);
n = *n-;
sum = ;
for(int i= ; i<=m ; i++){
int v;
scanf("%d" , &v);
p[i] = v*1.0/100.0;
sum += p[i]*i;
}
if(st == en){
puts("0.00");
continue;
}
if(dire>) st = n-st;
if(!bfs()){
puts("Impossible !");
continue;
}
build();
if(!gauss(cnt)) {
puts("Impossible !");
continue;
}
printf("%.2f\n" , a[][cnt]); }
return ;
}
HDU 4418 高斯消元解决概率期望的更多相关文章
- [置顶] hdu 4418 高斯消元解方程求期望
题意: 一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...
- hdu 4418 高斯消元求期望
Time travel Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 【BZOJ3143】游走(高斯消元,数学期望)
[BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...
- HDU 2827 高斯消元
模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...
- First Knight UVALive - 4297(优化高斯消元解概率dp)
题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ...
- 【BZOJ 3640】JC的小苹果 (高斯消元,概率DP)
JC的小苹果 Submit: 432 Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话 ...
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- hdu 3915 高斯消元
http://acm.hdu.edu.cn/showproblem.php?pid=3915 这道题目是和博弈论挂钩的高斯消元.本题涉及的博弈是nim博弈,结论是:当先手处于奇异局势时(几堆石子数相互 ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
随机推荐
- Unity中所有特殊的文件夹
1. 隐藏文件夹以.开头的文件夹会被Unity忽略.在这种文件夹中的资源不会被导入,脚本不会被编译.也不会出现在Project视图中.2. Standard Assets在这个文件夹中的脚本最先被编译 ...
- Apache Cordova
http://cordova.apache.org/ Apache Cordova is a platformfor building native mobile applications using ...
- canvas 平移&缩放
1.平移 canvas其实只是一个包装器,真正起着重要作用的部分是2D渲染上下文,这才是我们真正绘制图形的地方. 然而2D渲染上下文是一种基于屏幕的标准绘制平台.它采用屏幕的笛卡尔坐标系统,以左上角( ...
- Web服务器安全设置
Web服务器安全方面一直重视程度不够,是各种网站经常被黑的主要原因.下面笔者总结了一下关于怎样保证Web服务器安全的措施,希望能给那些服务器尚存在漏洞的用户提供一些帮助. 本文主要以Windows s ...
- 使用libsvm实现文本分类
@Hcy(黄灿奕) 文本分类,首先它是分类问题,应该对应着分类过程的两个重要的步骤,一个是使用训练数据集训练分类器,另一个就是使用测试数据集来评价分类器的分类精度.然而,作为文本分类,它还具有文本这样 ...
- FPGA编程技巧系列之按键边沿检测
抖动的产生: 通常的按键所用开关为机械弹性开关,当机械触点断开.闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开.因而在闭合及断开的瞬间均伴随有一连串的 ...
- System.currentTimeMillis()与日期之间的相互转换
System.currentTimeMillis()与日期 之间是可以相互转换的,大多数Android开发者都知道 通过 SimpleDateFormat dateformat = new Simpl ...
- C3P0连接池工具类实现步骤及方法
C3P0连接池的工具类 使用C3P0获得连接对象连接池有一个规范接口 javax.sal.DataSourse 接口定义了一个从连接池中获得连接的方法getConnection(); 步骤导入jar包 ...
- echo - 显示一行文本
SYNOPSIS(总览) echo[OPTION]... [STRING]... DESCRIPTION(描述) 允许在标准输出上显示STRING(s). -n 不输出行尾的换行符. -e 允许对下面 ...
- 屏幕卫士模式系统APP开发
利用php的socket编程来直接给接口发送数据来模拟post的操作,(黎灿:I8O..2853..296O 可电可V)线上线下和物流结合在一起,才会产生新零售. 2016年阿里云栖大会上,阿里巴巴马 ...