Problem 2102 Solve equation

Accept: 881    Submit: 2065

Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

You are given two positive integers A and B in Base C. For the equation:

A=k*B+d

We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.

For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:

(1) A=0*B+123

(2) A=1*B+23

As we want to maximize k, we finally get one solution: (1, 23)

The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.

 Input

The first line of the input contains an integer T (T≤10), indicating the number of test cases.

Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.

 Output

For each test case, output the solution “(k,d)” to the equation in Base 10.

 Sample Input

3
2bc 33f 16
123 100 10
1 1 2

 Sample Output

(0,700)
(1,23)
(1,0)

题目意思很好懂吧,然而做的时候就卡在了进制转换这,特意去百度了一下怎么转10进制;

网上是这样给的:

假如一个数abcdef,是x进制数,转10进制就是a*x^5+b*x^4+c*x^3+d*x^2+e*x^1+f*x^0;看懂了吧,当时还真这样用for循环遍历了一遍,还真对,运行结果及其他测试样例也都没错,但这思路代码活生生CE了6遍;

CE:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<ctype.h>
using namespace std;
int main()
{
int t,a,b,c,x1,x2;
char aa[55],bb[55];
scanf("%d",&t);
while(t--)
{
memset(aa,'0',sizeof(aa));
memset(bb,'0',sizeof(bb));
a=b=0;
scanf("%s%s%d",aa,bb,&c);
x1=strlen(aa);
x2=strlen(bb);
int x11=x1,x22=x2;
if(c==10)
{
for(int i=0;i<x1;i++)
a=a*10+(aa[i]-'0');
for(int i=0;i<x2;i++)
b=b*10+(bb[i]-'0');
}
else
{
for(int i=0;i<x1;i++)
{
if(islower(aa[i]))
a+=(aa[i]-'a'+10)*pow(c,x11-i-1);
else
a+=(aa[i]-'0')*(pow(c,(x11-i-1)));
}
for(int i=0;i<x2;i++)
{
if(islower(bb[i]))
b+=(bb[i]-'0'+10)*(pow(c,(x22-i-1)));//记得pow好像适用于double,可能要用pow(double(c),_);
else
b+=(bb[i]-'0')*(pow(c,(x22-i-1)));
}
}
int k=a/b,d=a-k*b;
printf("(%d,%d)\n",k,d);
}
return 0;
}

就这样浪费了一个水题;

看以AC的代码发现他们都是这样转10进制的: 字符串a输入,假如长度x,是c进制数,那么转10进制   int aa=0;

(1)      for(i=0;i<x;i++)

aa=aa*10+(aa[i]-'0')//字符串本身代表的就是10进制数;

(2)

for(i=0;i<x;i++)

aa=aa*10+(aa[i]-'a'+10)//字符串本身代表的不是10进制数,,,,,百度上怎么没有,,亿脸懵逼;;;

AC:

<span style="font-size:18px;">#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<ctype.h>
using namespace std;
int main()
{
int t,a,b,c,x1,x2;
char aa[55],bb[55];
scanf("%d",&t);
while(t--)
{
a=b=0;
scanf("%s%s%d",aa,bb,&c);
x1=strlen(aa);
x2=strlen(bb);
for(int i=0; i<x1; i++)
{
if(islower(aa[i]))
a=a*c+(aa[i]-'a')+10;
else
a=a*c+(aa[i]-'0');
}
for(int i=0; i<x2; i++)
{
if(islower(bb[i]))
b=b*c+(bb[i]-'a')+10;
else
b=b*c+(bb[i]-'0');
}
int k=a/b,d=a-k*b;
printf("(%d,%d)\n",k,d);
}
return 0;
}</span>

FZU2102Solve equation的更多相关文章

  1. CodeForces460B. Little Dima and Equation

    B. Little Dima and Equation time limit per test 1 second memory limit per test 256 megabytes input s ...

  2. ACM: FZU 2102 Solve equation - 手速题

     FZU 2102   Solve equation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  3. HDU 5937 Equation

    题意: 有1~9数字各有a1, a2, -, a9个, 有无穷多的+和=. 问只用这些数字, 最多能组成多少个不同的等式x+y=z, 其中x,y,z∈[1,9]. 等式中只要有一个数字不一样 就是不一 ...

  4. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  5. CF460B Little Dima and Equation (水题?

    Codeforces Round #262 (Div. 2) B B - Little Dima and Equation B. Little Dima and Equation time limit ...

  6. Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)

    ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...

  7. ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分

    Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...

  8. [ACM_数学] Counting Solutions to an Integral Equation (x+2y+2z=n 组合种类)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27938#problem/E 题目大意:Given, n, count the numbe ...

  9. hdu 2199 Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

随机推荐

  1. [已读]图解CSS3核心技术与案例实战

    买的时候犹豫了好久,也征询了下几个前端朋友.我一直蛮怕买华章的书,好在这本内容很不错,买得值了. 大漠的css功底很深厚,这本书也很厚= =,读完之后对css圆角以及background-origin ...

  2. Git之远程项目克隆到本地配置

    远程代码克隆到本地工作区,需要进行简单的配置,用于识别身份 1.git config --global user.name    [设置用户名,你的github用户名] 2.git config -- ...

  3. 证明碰撞集问题(Hitting Set)是NP-complete

    证明碰撞集问题(Hitting Set)是NP-complete Problem In the HITTING SET problem, we are given a family of sets { ...

  4. iOS 蒲公英第三方打包平台

    http://www.pgyer.com/doc/view/ios_install_failed

  5. Tcl介绍和基础语法

    Tcl的背景 Tcl(读作tickle)诞生于80年代的加州大学伯克利分校,作为一种简单高效可移植性好的脚本语言,目前已经广泛应用在几乎所有的EDA工具中.Tcl 的最大特点就是其语法格式极其简单,采 ...

  6. KendoUI Grid Pager部分 Nan-Nan of x Items

    相关问题: http://stackoverflow.com/questions/23941065/pager-error-in-kendo-gridnan-nan-of-1-items http:/ ...

  7. 全文索引Elasticsearch,Solr,Lucene

    最近项目组安排了一个任务,项目中用到了全文搜索,基于全文搜索 Solr,但是该 Solr 搜索云项目不稳定,经常查询不出来数据,需要手动全量同步,而且是其他团队在维护,依赖性太强,导致 Solr 服务 ...

  8. COGS 1570. [POJ3461]乌力波

    ★☆   输入文件:oulipo.in   输出文件:oulipo.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 法国作家乔治·佩雷克(Georges Perec,1 ...

  9. Android(java)学习笔记167:横竖屏切换时Activity的生命周期

    1.横竖屏切换的生命周期     默认情况下横竖屏切换,先销毁再创建 2.有的时候,默认情况下的横竖屏切换(先销毁再创建),对应用户体验是不好的,比如是手机游戏横竖屏切换对游戏体验非常不好,下面两种方 ...

  10. Robot Framework(十四) 扩展RobotFramework框架——创建测试库

    4.1创建测试库 Robot Framework的实际测试功能由测试库提供.有许多现有的库,其中一些甚至与核心框架捆绑在一起,但仍然经常需要创建新的库.这个任务并不复杂,因为正如本章所示,Robot ...