C

Dog Distance

Input

Standard Input

Output

Standard Output

Two dogs, Ranga and Banga, are running randomly following two different paths. They both run for T seconds with different speeds. Ranga runs with a constant speed of R m/s, whereas Banga runs with a constant speed of S m/s. Both the dogs start and stop at the same time. Let D(t) be the distance between the two dogs at time t.

The dog distance is equal to the difference between the maximum and the minimum distance between the two dogs in their whole journey.

Mathematically,

Dog Distance = {max (D(a)) 0 <= a <= T} – {min (D(b))  0 <= b <= T}

Given the paths of the two dogs, your job is to find the dog distance.

Each path will be represented using N points, (P1 P2 P3 ... PN). The dog following this path will start from P1 and follow the line joining with P2, and then it will follow the line joining P2-P3, thenP3-P4 and so on until it reaches Pn.

Input

Input starts with an integer I(I1000), the number of test cases.

Each test case starts with 2 positive integers A(2A50), B(2B50). The next line contains the coordinates of A points with the format XYXY2 ...XA YA(0≤ Xi,Yi ≤1000). These points indicate the path taken by Ranga. The next line contains B points in the same format. These points indicate the path taken by Banga. All distance units are given in meters and consecutive points are distinct. All the given coordinates are integers.

Note that the values of TR and S are unknown to us.

Output

For each case, output the case number first. Then output the dog distance rounded to the nearest integer. Look at the samples for exact format.

Sample Input

Sample Output

2

2 2

0 0 10 0

0 1 10 1

3 2

635 187 241 269 308 254

117 663 760 413

Case 1: 0

Case 2: 404

题目大意:两条狗按各自的折线线路奔跑,它们同时出发同事到达终点。求奔跑过程中两只狗的最大距离与最小距离之差。

标记为红色的均为向量,其他的则为点。

分析:整个过程可以按折点细化成多个它们沿着各自的线段奔跑同时出发同时到达终点,假设它们的起点为sa,sb终点为ea,eb,位移为Sa,Sb。运动是相对的所以可以认为一只狗不动待在sa,另一只口沿着直线跑。以a为参考系,b相对a的速度为Vb-Va。由于它们的运动时间相等s=vt,所以这个过程等同与b从sb移动到(sb+(Sb-Sa)),即转化为求点sa到线段(sb --- sb+(Sb-Sa))的最大距离与最小距离。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
};
typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-;
int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
}
bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
}
double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double Length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;} Vector Rotate(Vector A,double rad)//向量旋转
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} double DistanceToLine(Point P,Point A,Point B)//点到直线的距离
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
} double DistanceToSegment(Point P,Point A,Point B)//点到线段的距离
{
if(A==B) return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2)) < ) return Length(v2);
else if(dcmp(Dot(v1,v3)) > ) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} Point GetLineProjection(Point P,Point A,Point B)//P在直线上的投影点
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)//两线段规范相交(不包括端点)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} bool OnSegment(Point p,Point a1,Point a2)//点是否在线段上
{
return dcmp(Cross(a1-p,a2-p))== && dcmp(Dot(a1-p,a2-p))<;
} double PolygonArea(Point *p,int n)//多边形的有向面积
{
double area=;
for(int i=;i<n-;i++)
area+=Cross(p[i]-p[],p[i+]-p[]);
return area/;
} const int maxn=;
int T,A,B,Icase;
Point P[maxn],Q[maxn];
double Min,Max;
double LenA,LenB,La,Lb,t;
int i,sa,sb;
Point Pa,Pb;
Vector Va,Vb; Point read_point()
{
Point p;
scanf("%lf %lf",&p.x,&p.y);
return p;
} double min(double a,double b)
{
if(a-b>0.00000001) return b;
else return a;
} double max(double a,double b)
{
if(a-b>0.00000001) return a;
else return b;
} void update(Point P,Point A,Point B)
{
Min=min(Min,DistanceToSegment(P,A,B));
Max=max(Max,Length(P-A));
Max=max(Max,Length(P-B));
//printf("%.lf %.lf %.lf %.lf %.lf %.lf\n",P.x,P.y,A.x,A.y,B.x,B.y);
} int main()
{
Icase=;
scanf("%d",&T);
while(T--)
{
Icase++;
Min=1e9,Max=-1e9;
//printf("%.lf %.lf\n",Min,Max);
scanf("%d %d",&A,&B);
for(i=;i<A;i++) P[i]=read_point();
for(i=;i<B;i++) Q[i]=read_point();
LenA=LenB=;
for(i=;i<A;i++) LenA+=Length(P[i]-P[i-]);
for(i=;i<B;i++) LenB+=Length(Q[i]-Q[i-]);
sa=sb=;
Pa=P[],Pb=Q[];
while(sa<A- && sb<B-)
{
La=Length(P[sa+]-Pa);
Lb=Length(Q[sb+]-Pb);
t=min(La/LenA,Lb/LenB);
Va=(P[sa+]-Pa)/La*t*LenA;
Vb=(Q[sb+]-Pb)/Lb*t*LenB;
update(Pa,Pb,Pb+Vb-Va);
Pa=Pa+Va;
Pb=Pb+Vb;
if(Pa==P[sa+]) sa++;
if(Pb==Q[sb+]) sb++;
}
//printf("%lf %lf\n",Max,Min);
printf("Case %d: %.0lf\n",Icase,Max-Min);
}
return ;
}

uva 11798 相对运动的最小最大距离的更多相关文章

  1. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  2. UVa 1658 - Admiral(最小费用最大流 + 拆点)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...

  4. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  5. UVA - 10480 Sabotage【最小割最大流定理】

    题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...

  6. UVa 1331 最大面积最小的三角剖分

    https://vjudge.net/problem/UVA-1331 题意:输入一个多边形,找一个最大三角形面积最小的三角剖分,输出最大三角形的面积. 思路: 最优三角剖分. dp[i][j]表示从 ...

  7. UVa 1658 海军上将(最小费用最大流)

    https://vjudge.net/problem/UVA-1658 题意: 给出一个v个点e条边的有向加权图,求1~v的两条不相交(除了起点和终点外公共点)的路径,使得权和最小. 思路:把2到v- ...

  8. UVa 10791 最小公倍数的最小和(唯一分解定理)

    https://vjudge.net/problem/UVA-10791 题意: 输入整数n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小. 思路: 首先对n进行质因数分解,举个例子 ...

  9. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

随机推荐

  1. ios 使用NSRegularExpression解析正则表达式

    初始化一个   NSRegularExpression 对象 注:_str是要匹配的字符串 NSRegularExpression *regex = [NSRegularExpression regu ...

  2. 带二级目录的Nginx配置------目前找到的最简单的方法

    由于项目不知一个,所以不得不为每一个项目建一个专有的文件夹,这就导致了在配置nginx的时候会出现二级目录 目前找到的最简单的方法     - step1:修改 vue.config.js   添加配 ...

  3. 安装PIL报错解析

    开始安装PIL PIL只支持到python2.7,我安装的是python3.6版本,所以  不支持,报错 需要下载支持自己版本的包,下载地址https://www.lfd.uci.edu/~gohlk ...

  4. 四、绘图可视化之Seaborn

    Seaborn-Powerful Matplotlib Extension seaborn实现直方图和密度图 import numpy as np import pandas as pd import ...

  5. python之数据类型补充

    1. capitalize (首字母大写) 例题: s = "alex wusir" s1 = s.capitalize() # 格式 print(s1) ''' 输出结果 Ale ...

  6. syslog(),closelog()与openlog()--日志操作函数 (1)

    文章出处:http://blog.csdn.net/xx77009833/archive/2010/07/30/5776383.aspx 为了满足某些目的,进行日志记录是很有必要的. 在典型的 LIN ...

  7. python-DB模块

    基于python的接口测试框架设计   连接数据库 首先是连接数据库的操作,最好是单独写在一个模块里, 然后便于方便的调用,基于把connection连接放在__init__()方法里 然后分别定义D ...

  8. bootstrap 按钮组的嵌套

    您可以在一个按钮组内嵌套另一个按钮组,即,在一个 .btn-group 内嵌套另一个 .btn-group .当您想让下拉菜单与一系列按钮组合使用时,就会用到这个. 实例: <!DOCTYPE ...

  9. Lucene入门基础教程

    http://www.linuxidc.com/Linux/2014-06/102856.htm

  10. ulimit 值超出允许范围导致无法登陆操作系统

    在linux中,使用ulimit可以设置一些资源的使用限制. [root@root ~]# ulimit -a core file size          (blocks, -c) unlimit ...