C

Dog Distance

Input

Standard Input

Output

Standard Output

Two dogs, Ranga and Banga, are running randomly following two different paths. They both run for T seconds with different speeds. Ranga runs with a constant speed of R m/s, whereas Banga runs with a constant speed of S m/s. Both the dogs start and stop at the same time. Let D(t) be the distance between the two dogs at time t.

The dog distance is equal to the difference between the maximum and the minimum distance between the two dogs in their whole journey.

Mathematically,

Dog Distance = {max (D(a)) 0 <= a <= T} – {min (D(b))  0 <= b <= T}

Given the paths of the two dogs, your job is to find the dog distance.

Each path will be represented using N points, (P1 P2 P3 ... PN). The dog following this path will start from P1 and follow the line joining with P2, and then it will follow the line joining P2-P3, thenP3-P4 and so on until it reaches Pn.

Input

Input starts with an integer I(I1000), the number of test cases.

Each test case starts with 2 positive integers A(2A50), B(2B50). The next line contains the coordinates of A points with the format XYXY2 ...XA YA(0≤ Xi,Yi ≤1000). These points indicate the path taken by Ranga. The next line contains B points in the same format. These points indicate the path taken by Banga. All distance units are given in meters and consecutive points are distinct. All the given coordinates are integers.

Note that the values of TR and S are unknown to us.

Output

For each case, output the case number first. Then output the dog distance rounded to the nearest integer. Look at the samples for exact format.

Sample Input

Sample Output

2

2 2

0 0 10 0

0 1 10 1

3 2

635 187 241 269 308 254

117 663 760 413

Case 1: 0

Case 2: 404

题目大意:两条狗按各自的折线线路奔跑,它们同时出发同事到达终点。求奔跑过程中两只狗的最大距离与最小距离之差。

标记为红色的均为向量,其他的则为点。

分析:整个过程可以按折点细化成多个它们沿着各自的线段奔跑同时出发同时到达终点,假设它们的起点为sa,sb终点为ea,eb,位移为Sa,Sb。运动是相对的所以可以认为一只狗不动待在sa,另一只口沿着直线跑。以a为参考系,b相对a的速度为Vb-Va。由于它们的运动时间相等s=vt,所以这个过程等同与b从sb移动到(sb+(Sb-Sa)),即转化为求点sa到线段(sb --- sb+(Sb-Sa))的最大距离与最小距离。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
};
typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-;
int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
}
bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
}
double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double Length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;} Vector Rotate(Vector A,double rad)//向量旋转
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} double DistanceToLine(Point P,Point A,Point B)//点到直线的距离
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
} double DistanceToSegment(Point P,Point A,Point B)//点到线段的距离
{
if(A==B) return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2)) < ) return Length(v2);
else if(dcmp(Dot(v1,v3)) > ) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} Point GetLineProjection(Point P,Point A,Point B)//P在直线上的投影点
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)//两线段规范相交(不包括端点)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} bool OnSegment(Point p,Point a1,Point a2)//点是否在线段上
{
return dcmp(Cross(a1-p,a2-p))== && dcmp(Dot(a1-p,a2-p))<;
} double PolygonArea(Point *p,int n)//多边形的有向面积
{
double area=;
for(int i=;i<n-;i++)
area+=Cross(p[i]-p[],p[i+]-p[]);
return area/;
} const int maxn=;
int T,A,B,Icase;
Point P[maxn],Q[maxn];
double Min,Max;
double LenA,LenB,La,Lb,t;
int i,sa,sb;
Point Pa,Pb;
Vector Va,Vb; Point read_point()
{
Point p;
scanf("%lf %lf",&p.x,&p.y);
return p;
} double min(double a,double b)
{
if(a-b>0.00000001) return b;
else return a;
} double max(double a,double b)
{
if(a-b>0.00000001) return a;
else return b;
} void update(Point P,Point A,Point B)
{
Min=min(Min,DistanceToSegment(P,A,B));
Max=max(Max,Length(P-A));
Max=max(Max,Length(P-B));
//printf("%.lf %.lf %.lf %.lf %.lf %.lf\n",P.x,P.y,A.x,A.y,B.x,B.y);
} int main()
{
Icase=;
scanf("%d",&T);
while(T--)
{
Icase++;
Min=1e9,Max=-1e9;
//printf("%.lf %.lf\n",Min,Max);
scanf("%d %d",&A,&B);
for(i=;i<A;i++) P[i]=read_point();
for(i=;i<B;i++) Q[i]=read_point();
LenA=LenB=;
for(i=;i<A;i++) LenA+=Length(P[i]-P[i-]);
for(i=;i<B;i++) LenB+=Length(Q[i]-Q[i-]);
sa=sb=;
Pa=P[],Pb=Q[];
while(sa<A- && sb<B-)
{
La=Length(P[sa+]-Pa);
Lb=Length(Q[sb+]-Pb);
t=min(La/LenA,Lb/LenB);
Va=(P[sa+]-Pa)/La*t*LenA;
Vb=(Q[sb+]-Pb)/Lb*t*LenB;
update(Pa,Pb,Pb+Vb-Va);
Pa=Pa+Va;
Pb=Pb+Vb;
if(Pa==P[sa+]) sa++;
if(Pb==Q[sb+]) sb++;
}
//printf("%lf %lf\n",Max,Min);
printf("Case %d: %.0lf\n",Icase,Max-Min);
}
return ;
}

uva 11798 相对运动的最小最大距离的更多相关文章

  1. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  2. UVa 1658 - Admiral(最小费用最大流 + 拆点)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...

  4. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  5. UVA - 10480 Sabotage【最小割最大流定理】

    题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...

  6. UVa 1331 最大面积最小的三角剖分

    https://vjudge.net/problem/UVA-1331 题意:输入一个多边形,找一个最大三角形面积最小的三角剖分,输出最大三角形的面积. 思路: 最优三角剖分. dp[i][j]表示从 ...

  7. UVa 1658 海军上将(最小费用最大流)

    https://vjudge.net/problem/UVA-1658 题意: 给出一个v个点e条边的有向加权图,求1~v的两条不相交(除了起点和终点外公共点)的路径,使得权和最小. 思路:把2到v- ...

  8. UVa 10791 最小公倍数的最小和(唯一分解定理)

    https://vjudge.net/problem/UVA-10791 题意: 输入整数n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小. 思路: 首先对n进行质因数分解,举个例子 ...

  9. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

随机推荐

  1. PBI DAX 中GroupBy

    平时工作中经常会遇到Group By 的情形,用sql 写group by 很容易,在PBI中可以这样写: SUMMARIZE(表名,GroupBy Key ,"聚合列命名",DI ...

  2. 二、pandas入门

    import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # ...

  3. js采用正则表达式获取地址栏参数

    getQueryString:function(name) { var reg = new RegExp("(^|&)"+ name +"=([^&]*) ...

  4. webpack执行命令的不同方式

    如使用webpack3及之前的版本只需安装webpack3即可,因为之前的webpack里面集成了webpack-cli 1. 使用局部安装webpack和webpack-cli,使用package. ...

  5. [LUOGU] P2543 [AHOI2004]奇怪的字符串

    LCS //Writer:GhostCai && His Yellow Duck #include<iostream> #include<cstring> #d ...

  6. Java8特性详解 lambda表达式 Stream【转】

    本文转自http://www.cnblogs.com/aoeiuv/p/5911692.html 1.lambda表达式 Java8最值得学习的特性就是Lambda表达式和Stream API,如果有 ...

  7. 5.电影搜索之 自动填充,也叫autocomplete、搜索建议!

    什么叫自动填充,用过百度的应该都知道!当你输入关键词之后,会有一个下拉的候选列表,都是与你输入的内容相关的,这个就是自动填充的搜索建议.一般的搜索引擎或者站内搜索都会有这个功能. 今天分享下这个功能的 ...

  8. laravel中对加载进行优化

    在laravel中的模型与模型之间创建好关联关系会比较方便的方法 但是我们为了方便,有时也会忽略一些东西,比如: 我们在控制器中把整个一个文章对象传到了模板页面 在一次for循环下, 我们对数据进行了 ...

  9. Python_sort函数结合functools.cmp_to_key(func)分析

    举例如下: from functools import cmp_to_key persons = [ { 'name':'zhangsan', 'age':20, 'grade':98 }, { 'n ...

  10. 不同深度的图片转换cvConvertScale

    不同深度图像的转换:要注意范围比如IPL_DEPTH_8U 转到 IPL_DEPTH_32U要用cvConvertScale(pImg8, pImg32, 1.0/255, 0); 要除255反过来I ...