问题描述

求无负权图中点s到点t的最短凝聚力

备注

标准说法中,“缩短”/“松弛”(relax)操作是对边进行的。下面为了行文方便,将其拓展到点。即以下操作,其中A表示目前已经算出的点i到j的距离:

A[i][j]=min(A[i][v] + A[v][j] , A[i][j]) (同时维护path数组)

算法思路

类似于按拓扑排序的顺序,对所有点进行缩短操作。

下面具体阐述。

用d[i]记录已算出的点s到点j之间的距离,path[j]记录目前算出的s到j最短路径中,j节点的上一个节点

将点分为两个集合:已完成的Known和未完成的unknown.

初始时,将所有d赋为无穷大,d[s]赋为0;所有点均为unknown

循环:对unknown的所有点,择其d最小者,进行缩短操作,该点加入known。直到所有点都为known。

实现思路

用一个数组known,known[i]为1则表示known,为0 表示unknown

一些恼人的小问题

1.无穷大问题

假设输入的邻接矩阵中,每点与自己的权值为0,不邻接的两点权值为MAX,MAX被宏定义为一个非常大但不容易溢出的整数。

2.多维动态数组传参问题

受编译器原理的限制,C/C++将多维动态数组作为函数参数传递是非常麻烦的,比如邻接矩阵。

源码

#include<iostream>
using namespace std; #define MAX 50000 void printPath(int path[], int n,int s,int t)
{
if (t == s)
cout << s;
else
{
printPath(path, n, s, path[t]);
cout << "->"<<t;
} }
/*
仅适用于无负权的图
distance是目前算出的s到某点的距离数组,path是从s到某点v的最短路径中,v的上一节点
初始化将distance全部赋为正无穷,之后从s点开始,进行缩短操作,
此后选择未进行缩短的点中distance最小者进行缩短,直至所有点都完成了缩短操作
*/
int main()
{
/*-----------------------声明与定义--------------------*/
int n =7, s = 0, t = 0, i, distS2T;
int G[7][7] =
{ 0,4,5,6,MAX,MAX,MAX,
4,0,3,MAX,1,MAX,MAX,
5,3,0,MAX,MAX,2,MAX,
6,MAX,MAX,0,2,MAX,MAX,
MAX,1,MAX,2,0,MAX,4,
MAX,MAX,2,MAX,MAX,0,3,
MAX,MAX,MAX,MAX,4,3,0
};
int *known = new int[n](), *distance = new int[n],*path = new int[n]; //如果s到某点距离已经确定了(该点已经被用于relax过了),则known为1,否则为0
//disFromS[]数组是s到各点的最短距离.
//---------------------------------赋初值-------------------------------
for (i = 0; i < n; i++)
{
distance[i] = MAX;
}
distance[s] = 0;
path[s] = s; //------循环:选择unknown的点中dis最小的进行缩短操作,直到所有点全部为known------ while (1) //there's stil unknown vertex
{ i = 0;
while (known[i] == 1 && i<n)
i++;//find the first unknown vertex
if (i >= n) break; //if all vertices are known ,end the algorithm
int v = i;
for (; i < n; i++) //find the unknown vertex with the min distance
{
if (!known[i] && distance[v] > distance[i]) v = i;
} //relax(minPos); modify dis and parent
for (i = 0; i < n; i++)
{
//for each unknown vertex i,
if (known[i]) continue;
if (distance[i] > distance[v] + G[v][i])
{
distance[i] = distance[v] + G[v][i];
path[i] = v;
}
}
known[v] = 1;
} //--------------输出&释放内存----------------------
distS2T = distance[t];
cout << distS2T<<endl;
for (i = 0; i < n;i++)
cout << path[i] << " ";
cout << endl;
for (i = 0; i < n; i++)
cout << distance[i]<<" ";
cout << endl;
printPath(path, n, 0, 6); delete[] known;
delete[] distance;
delete[] path;
while (1);
return 0; }

Dijkstra算法C++实现总结的更多相关文章

  1. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  2. Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解

    /* Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次. 要知道,我们从队列头部找到的都是到 已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其 ...

  3. 关于dijkstra算法的一点理解

    最近在准备ccf,各种补算法,图的算法基本差不多看了一遍.今天看的是Dijkstra算法,这个算法有点难理解,如果不深入想的话想要搞明白还是不容易的.弄了一个晚自习,先看书大致明白了原理,就根据书上的 ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  6. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  7. 最短路问题Dijkstra算法

    Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...

  8. dijkstra算法求最短路

    艾兹格·W·迪科斯彻 (Edsger Wybe Dijkstra,1930年5月11日~2002年8月6日)荷兰人. 计算机科学家,毕业就职于荷兰Leiden大学,早年钻研物理及数学,而后转为计算学. ...

  9. 数据结构之Dijkstra算法

    基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...

  10. ACM: HDU 1869 六度分离-Dijkstra算法

    HDU 1869六度分离 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descri ...

随机推荐

  1. 《windows核心编程系列》十六谈谈内存映射文件

    内存映射文件允许开发人员预订一块地址空间并为该区域调拨物理存储器,与虚拟内存不同的是,内存映射文件的物理存储器来自磁盘中的文件,而非系统的页交换文件.将文件映射到内存中后,我们就可以在内存中操作他们了 ...

  2. Linux下GCC编译器的安装

    通过apt-get方式下载的Qt5.9的gcc编译器版本只是4.8.3,无法打开一些Qt5的库头文件,所以准备在Llinux下再安装一个gcc5.3.0. 查看gcc版本 ubuntu下查看gcc的版 ...

  3. 异或+构造 HDOJ 5416 CRB and Tree

    题目传送门 题意:给一棵树,问f (u, v) 意思是u到v的所有路径的边权值的异或和,问f (u, v) == s 的u,v有几对 异或+构造:首先计算f (1, u) 的值,那么f (u, v) ...

  4. 员工管理系统(集合与IO流的结合使用 beta1.0 ArrayList<Employee>)

    package cn.employee; public class Employee { private int empNo; private String name; private String ...

  5. 452 Minimum Number of Arrows to Burst Balloons 用最少数量的箭引爆气球

    在二维空间中有许多球形的气球.对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标.由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了.开始坐标总是小于结束坐标.平面 ...

  6. Oracle分区表例子

    分区表 Oracle提供的分区方法有以下几种. 1.范围分区(range) 范围分区是应用范围比较广的表分区方式,它是以列的值的范围来作为分区的划分条 件,将记录存放到列值所在的 range分区中. ...

  7. 建造者模式以及php实现

    建造者模式: 造者模式(Builder Pattern):将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 建造者模式是一步一步创建一个复杂的对象,它允许用户只通过指定复杂对 ...

  8. 一个简单的公式——求小于N且与N互质的数的和

    首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...

  9. ReactJS-2-props vs state

    rops理解: 大多数组件都可以在创建的时候被不同的参数定制化,这些不同的参数就叫做props.props的流向是父组件到子组件. 子组件Comment,是一条评论组件,父组件CommentList, ...

  10. 掌握Spark机器学习库-07-线性回归算法概述

    1)简介 自变量,因变量,线性关系,相关系数,一元线性关系,多元线性关系(平面,超平面) 2)使用线性回归算法的前提 3)应用例子 沸点与气压 浮力与表面积