for(int j=;j<i;j++){
if(h[i] > h[j]){
if(len[i] == len[j] + ) cnt[i]+=cnt[j];
if(len[i] < len[j] + ) len[i] = len[j] + , cnt[i] = cnt[j];
}
//身高相同的情况统计
/*else if(h[i] == h[j]){
if(len[i] == len[j]) cnt[i] += cnt[j];
if(len[i] < len[j]) len[i] = len[j] , cnt[i] = cnt[j];
}*/
}

这道题需要注意的一点是如果出现身高相同的情况,那么这两个人不管谁站在队列中只算一种情况:如上面的代码所示,如果相同也统计那么就会报错,但是样例因为没有相同高度所以可以过

len[i] 表示前i个对象能构建的最长的子序列长度

cnt[i] 表示前i个对象构建的最长子序列长度的个数

 #include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) a>b?a:b
const int N = ;
int h[N] , len[N] , cnt[N];
int main()
{
freopen("test.in","rb",stdin);
int n;
while(scanf("%d",&n)!=EOF){
memset(len , ,sizeof(len));
memset(cnt , ,sizeof(cnt));
len[] = , cnt[] = ;
for(int i = ;i < n;i++)
{
len[i] = cnt[i] = ;
scanf("%d",h+i);
for(int j=;j<i;j++){
if(h[i] > h[j]){
if(len[i] == len[j] + ) cnt[i]+=cnt[j];
if(len[i] < len[j] + ) len[i] = len[j] + , cnt[i] = cnt[j];
}
/*else if(h[i] == h[j]){
if(len[i] == len[j]) cnt[i] += cnt[j];
if(len[i] < len[j]) len[i] = len[j] , cnt[i] = cnt[j];
}*/
}
}
int max_len = , cnt_all = ;
for(int i=;i<n;i++){
max_len = max(max_len , len[i]);
}
for(int i=;i<n;i++){
if(max_len == len[i])
cnt_all += cnt[i];
}
printf("%d %d\n",max_len,cnt_all);
}
return ;
}

CSU 1225 最长上升子序列并记录其个数的更多相关文章

  1. 【最长下降子序列的长度和个数】 poj 1952

    转自http://blog.csdn.net/zhang360896270/article/details/6701589 这题要求最长下降子序列的长度和个数,我们可以增加数组maxlen[size] ...

  2. 【模拟】CSU 1807 最长上升子序列~ (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1807 题目大意: 给你一个长度为N(N<=105)的数列,数列中的0可以被其他数 ...

  3. HDU - 1160 最长上升子序列以及记录路径

    题意:第一列,给出老鼠的重量,第二列,给出老鼠的速度,要证明老鼠的重量越大,速度越小,给出最多老鼠的数量,并说明第几只. 思路:先将老鼠按照重量从大到小排序,然后速度是从小到大,求最长上升子序列,学习 ...

  4. CSU 1807: 最长上升子序列~ 分类讨论

    1807: 最长上升子序列~ Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 17[Submit][Status][Web Bo ...

  5. POJ - 2533 Longest Ordered Subsequence与HDU - 1257 最少拦截系统 DP+贪心(最长上升子序列及最少序列个数)(LIS)

    Longest Ordered Subsequence A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let ...

  6. (最长上升子序列 并记录过程)FatMouse's Speed -- hdu -- 1160

    http://acm.hdu.edu.cn/showproblem.php?pid=1160 FatMouse's Speed Time Limit: 2000/1000 MS (Java/Other ...

  7. [C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包

    一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子 ...

  8. - > 动规讲解基础讲解七——最长单增子序列

    (LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...

  9. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

随机推荐

  1. Matlab实现Hough变换检测图像中的直线 分类: 图像处理 2014-06-14 22:07 641人阅读 评论(0) 收藏

    Hough变换的原理: 将图像从图像空间变换至参数空间,变换公式如下: 变换以后,图像空间与参数空间存在以下关系: 图像空间中的一点在参数空间是一条曲线,而图像空间共线的各点对应于参数空间交于一点的各 ...

  2. java getDocumentBase() 得到的文件夹路径

    参考一个百度知道上的回答 举例说来,假设你的项目文件是xx,而这个xx文件夹是在D盘下的yy文件夹里,即项目文件的完整路径D:\yy\xx,则编译运行文件后,在xx文件夹里会产生名为build的文件夹 ...

  3. vue项目开发前的es6的知识储备

    let命令 学习笔记 1.let所声明的变量,只在let命令所在的代码块内有效. 2.不存在变量提升:所声明的变量一定要在声明后使用,否则报错. 一定要先声明,再去使用.let x=x;这样就是错误的 ...

  4. 在Bootstrap中得模态框(modal)中下拉不能显示得问题

    $.fn.modal.Constructor.prototype.enforceFocus = function () { $("#insertModal").on("s ...

  5. DeltaFish 选题报告总结

    选题结果:校园物资流动系统 报告地点:3A101 会议时间:16:00 ~ 18:00 与会人员:软工小组全体成员 请假人员:无  缺席人员:无 报告人:陈志锴 一.报告内容总结 1.产品功能 针对校 ...

  6. EasyUI edatagrid插件使用小计

    html片段 <table id="menuview" style="width:100%"> <thead> <tr> & ...

  7. JavaScript——class与原型对象

    原型对象的意义 通过new 一个构造函数,我们能够获得一个实例,在new 的过程中,程序会在内存中申请一块区域,同时我们可以加参数,所以每个对象都不一样. 原型对象则是同一个构造函数 new 出来的所 ...

  8. C++学习_继承覆盖重载

    今天通过对实验二继承,重载,覆盖的学习,让我更深一步理解了这些概念的区别. 首先来明确一个概念,函数名即地址,也就是说函数名就是个指针. 编译阶段,编译器为每个函数的代码分配一个地址空间并编译函数代码 ...

  9. ZXing.dll 生成二维码 C# winform net4.5

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  10. 【JavaScript从入门到精通】第一课

    第一课 初探JavaScript魅力-01 JavaScript是什么 如今我们打开一个大型的网站,都会有很多JS效果的功能和应用.对于学过CSS+HTML的同学,即使是像淘宝那样的网站,用一两天时间 ...