Problem 2105 Digits Count

 Problem Description

Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:

Operation 1: AND opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).

Operation 2: OR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).

Operation 3: XOR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).

Operation 4: SUM L R

We want to know the result of A[L]+A[L+1]+...+A[R].

Now can you solve this easy problem?

 Input

The first line of the input contains an integer T, indicating the number of test cases. (T≤100)

Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.

Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).

Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)

 Output

For each test case and for each "SUM" operation, please output the result with a single line.

 Sample Input

1 4 4 1 2 4 7 SUM 0 2 XOR 5 0 0 OR 6 0 3 SUM 0 2

 Sample Output

7 18

题意不多说了。 观察下a的值表示成二进制不会超过4位内存刚刚够。对每一位维护一下线段树就好了。

具体维护方法如下:

由于  :   1 & 0 = 0

0 & 0 =0    所以&0会改变区间值。

1& 1 =1

0&1=0  所以&1 区间值不变,可以忽略。

同理可以分析其他的操作。然后线段树lazy维护一下1的个数就好了。  注意xor 和& or是互斥的,也就是说当标记了&或or时应把标记 xor清空。

  1 // by cao ni ma
  2 // hehe
  3 #include <cstdio>
  4 #include <cstring>
  5 #include <algorithm>
  6 #include <vector>
  7 #include <queue>
  8 using namespace std;
  9 const int MAX = +;
 10 typedef long long ll;
 11 int sum[][MAX<<];
 12 int col_or[][MAX<<],col_xor[][MAX<<];
 13 int A[MAX];
 14 void pushup(int o,int cur){
 15     sum[cur][o]=sum[cur][o<<]+sum[cur][o<<|];
 16 }
 17 
 18 void pushdown(int o,int cur,int m){
 19     if(col_or[cur][o]!=-){
 20         col_xor[cur][o<<]=col_xor[cur][o<<|]=;
 21         col_or[cur][o<<]=col_or[cur][o<<|]=col_or[cur][o];
 22         sum[cur][o<<]=(m-(m>>))*col_or[cur][o<<];
 23         sum[cur][o<<|]=(m>>)*col_or[cur][o<<|];
 24         col_or[cur][o]=-;
 25     }
 26     if(col_xor[cur][o]){
 27         col_xor[cur][o<<]^=,col_xor[cur][o<<|]^=;
 28         sum[cur][o<<]=((m-(m>>))-sum[cur][o<<]);
 29         sum[cur][o<<|]=((m>>)-sum[cur][o<<|]);
 30         col_xor[cur][o]=;
 31     }
 32 }
 33 
 34 void build(int L,int R,int o,int cur){
 35     col_or[cur][o]=-;
 36     col_xor[cur][o]=;
 37     if(L==R){
 38         sum[cur][o]=((A[L]&(<<cur))?:);
 39     }
 40     else{
 41         int mid=(L+R)>>;
 42         build(L,mid,o<<,cur);
 43         build(mid+,R,o<<|,cur);
 44         pushup(o,cur);
 45     }
 46 }
 47 
 48 void modify2(int L,int R,int o,int ls,int rs,int v,int cur){
 49     if(ls<=L && rs>=R){
 50         col_xor[cur][o]=;
 51         col_or[cur][o]=v;
 52         sum[cur][o]=v*(R-L+);
 53         return ;
 54     }
 55     pushdown(o,cur,R-L+);
 56     int mid=(R+L)>>;
 57     if(ls<=mid) modify2(L,mid,o<<,ls,rs,v,cur);
 58     if(rs>mid) modify2(mid+,R,o<<|,ls,rs,v,cur);
 59     pushup(o,cur);
 60 
 61 }
 62 
 63 void modify1(int L,int R,int o,int ls,int rs,int v,int cur){
 64     if(ls<=L && rs>=R){
 65         if(col_or[cur][o]!=-){
 66             col_or[cur][o]^=;
 67             sum[cur][o]=(R-L+)-sum[cur][o];
 68             return ;
 69         }
 70         else{
 71             col_xor[cur][o]^=;
 72             sum[cur][o]=(R-L+)-sum[cur][o];
 73             return ;
 74         }
 75     }
 76     pushdown(o,cur,R-L+);
 77     int mid=(R+L)>>;
 78     if(ls<=mid) modify1(L,mid,o<<,ls,rs,v,cur);
 79     if(rs>mid) modify1(mid+,R,o<<|,ls,rs,v,cur);
 80     pushup(o,cur);
 81 }
 82 
 83 int Query(int L,int R,int o,int ls,int rs,int cur) {
 84     if(ls<=L && rs>=R) return sum[cur][o];
 85     pushdown(o,cur,R-L+);
 86     int mid=(R+L)>>; int ans=;
 87     if(ls<=mid) ans+=Query(L,mid,o<<,ls,rs,cur);
 88     if(rs>mid) ans+=Query(mid+,R,o<<|,ls,rs,cur);
 89     return ans;
 90 }
 91 
 92 int main(){
 93     int n,m,cas,ls,rs,val;
 94     char op[];
 95     scanf("%d",&cas);
 96     while(cas--){
 97         scanf("%d %d",&n,&m);
 98         for(int i=;i<=n;i++) {
 99             scanf("%d",&A[i]);
         }
         for(int i=;i<;i++) {
             build(,n,,i);
         }
         for(int i=;i<m;i++) {
             scanf("%s",op);
             if(op[]=='S'){
                 scanf("%d %d",&ls,&rs);
                 ls++,rs++;
                 int ans=;
                 for(int i=;i<;i++) {
                     ans+=Query(,n,,ls,rs,i)*(<<i);
                 }
                 printf("%d\n",ans);
             }
             else if(op[]=='O'){
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if(val&(<<i)){
                         modify2(,n,,ls,rs,,i);
                     }
                 }
             }
             else if(op[]=='A'){
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if(!(val&(<<i))){
                        modify2(,n,,ls,rs,,i);
                     }
                 }
             }
             else{
                 scanf("%d %d %d",&val,&ls,&rs);
                 rs++,ls++;
                 for(int i=;i<;i++) {
                     if((val&(<<i))){
                          modify1(,n,,ls,rs,,i);
                     }
                 }
             }
         }
     }
     return ;

145 }

FZU 2105 (线段树)的更多相关文章

  1. FZU 2171 线段树 区间更新求和

    很模板的题 在建树的时候输入 求和后更新 #include<stdio.h> #include<string.h> #include<algorithm> #inc ...

  2. FZU 2171(线段树的延迟标记)

    题意:容易理解. 分析:时隔很久,再一次写了一道线段树的代码,之前线段树的题也做了不少,包括各种延迟标记,但是在组队分任务之后,我们队的线段树就交给了另外一个队友在搞, 然后我就一直没去碰线段树的题了 ...

  3. HDU 3974 Assign the task(简单线段树)

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  5. FZU 2105 Digits Count(按位维护线段树)

    [题目链接] http://acm.fzu.edu.cn/problem.php?pid=2105 [题目大意] 给出一个序列,数字均小于16,为正数,每次区间操作可以使得 1. [l,r]区间and ...

  6. FZU 2105 Digits Count(线段树)

    Problem 2105 Digits Count Accept: 302 Submit: 1477 Time Limit: 10000 mSec Memory Limit : 262144 KB P ...

  7. F - Change FZU - 2277 (DFS序+线段树)

    题目链接: F - Change FZU - 2277 题目大意: 题意: 给定一棵根为1, n个结点的树. 有q个操作,有两种不同的操作 (1) 1 v k x : a[v] += x, a[v ' ...

  8. FZu Problem 2236 第十四个目标 (线段树 + dp)

    题目链接: FZu  Problem 2236 第十四个目标 题目描述: 给出一个n个数的序列,问这个序列内严格递增序列有多少个?不要求连续 解题思路: 又遇到了用线段树来优化dp的题目,线段树节点里 ...

  9. fzu 2082 过路费 (树链剖分+线段树 边权)

    Problem 2082 过路费 Accept: 887    Submit: 2881Time Limit: 1000 mSec    Memory Limit : 32768 KB  Proble ...

随机推荐

  1. bzoj 1647: [Usaco2007 Open]Fliptile 翻格子游戏【dfs】

    这个可以用异或高斯消元,但是我不会呀我用的暴搜 2的m次方枚举第一行的翻转情况,然后后面的就定了,因为对于一个j位置,如果i-1的j位置需要翻,那么一定要翻i的j,因为这是i-1的j最后翻的机会 按字 ...

  2. js 事件循环机制 EventLoop

    js 的非阻塞I/O  就是由事件循环机制实现的 众所周知  js是单线程的 也就是上一个任务完成后才能开始新的任务 那js碰到ajxa和定时器.promise这些异步任务怎么办那?这时候就出现了事件 ...

  3. spring cxf 配置步骤

    spring 项目增加web service的步骤:1.复制cxf的jar包2.web.xml配置cxf的核心控制器:org.apache.cxf.transport.servlet.CXFServl ...

  4. 17 C#中的循环执行 while循环

    在编程中有代码的执行主要有三种方式.(1)顺序执行,也就是一条语句一条语句按顺序执行:(2)条件执行,也就是if...else.当某种条件满足时执行一些代码:(3)循环执行,就是当某种条件满足的时候, ...

  5. dubbo面试题

    40 道 Dubbo 面试题及答案:https://blog.csdn.net/BinshaoNo_1/article/details/83024303 (原地址奉上:https://mp.weixi ...

  6. [ NOI 2002 ] 银河英雄传说

    \(\\\) Description 有 \(n\) 列战场,每一列一开始只有一个战舰,编号就是对应的战场编号. 有 \(m\) 次操作: \(M_{i,j}\) :把 \(i\) 所在的一整列接在 ...

  7. Java反射机制实战——字段篇

    首先,我们来认识几个类. Class(java.lang.Class) Class对象是一个特殊对象,每一个类都有一个Class对象,用来创建该类的“常规”对象.可以通过对象的getClass()方法 ...

  8. U盘安装完美的WIN7操作系统教程

    准备工作 首先备份或者在官网下载好您机器的驱动,否则完成后可能无法正常使用 ①一个有win7或者XP系统的电脑(制作启动盘用) ②一个4G以上的U盘 ③win7&win8系统包(请到官网下载或 ...

  9. Window提高_3.1练习_双进程守护

    双进程守护 当打开一个进程A的时候,此进程检测是否存在进程B,如果不存在就创建进程B. 进程B的作用是检测进程A是否被关闭,如果被关闭了,就再创建一个进程A. 双进程守护A.exe代码如下: #inc ...

  10. oracle_backup

    #!/bin/bash DAYS=`date +"%Y%m%d"` . /home/oracle/.bash_profile # /home/opt/oracle/11g/bin/ ...