d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到这个城市的距离设为0),草儿想去的地方有D个;

求D个城市中距离草儿家最近的距离。

s.进行1次单源最短路,找出距离最小的即可。

c.Dijkstra单源最短路

/*
Dijkstra单源最短路
权值必须是非负
单源最短路径,Dijkstra算法,邻接矩阵形式,复杂度为O(n^2)
求出源beg到所有点的最短路径,传入图的顶点数,和邻接矩阵cost[][]
返回各点的最短路径lowcost[],路径pre[].pre[i]记录beg到i路径上的父结点,pre[beg]=-1
可更改路径权类型,但是权值必须为非负
*/
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; const int MAXN=;
#define typec int
const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(typec cost[][MAXN],typec lowcost[],int n,int beg){
for(int i=;i<n;i++){
lowcost[i]=INF;vis[i]=false;pre[i]=-;
}
lowcost[beg]=;
for(int j=;j<n;j++){
int k=-;
int Min=INF;
for(int i=;i<n;i++)
if(!vis[i]&&lowcost[i]<Min){
Min=lowcost[i];
k=i;
}
if(k==-)break;
vis[k]=true;
for(int i=;i<n;i++)
if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i]){
lowcost[i]=lowcost[k]+cost[k][i];
pre[i]=k;
}
}
} int cost[MAXN][MAXN];
int lowcost[MAXN]; int main(){ int T,S,D;
int a,b,time;
int city1[MAXN];
int city2[MAXN]; while(~scanf("%d%d%d",&T,&S,&D)){
for(int i=;i<MAXN;++i){
for(int j=;j<MAXN;++j){
cost[i][j]=INF;
}
}
memset(vis,false,sizeof(vis)); for(int i=;i<T;++i){
scanf("%d%d%d",&a,&b,&time);
if(time<cost[a][b]){
cost[a][b]=time;
cost[b][a]=time;
}
}
//0作为草儿家
for(int i=;i<S;++i){
scanf("%d",&city1[i]);
cost[][city1[i]]=;
cost[city1[i]][]=;
}
for(int i=;i<D;++i){
scanf("%d",&city2[i]);
} Dijkstra(cost,lowcost,MAXN,);
int minTime=lowcost[city2[]];
for(int i=;i<D;++i){
if(lowcost[city2[i]]<minTime)
minTime=lowcost[city2[i]];
} printf("%d\n",minTime);
}
return ;
}

c2.Dijkstra算法+堆优化

/*
Dijkstra算法+堆优化
使用优先队列优化,复杂度O(E log E)
使用优先队列优化Dijkstra算法
复杂度O(E log E)
注意对vector<Edge>E[MAXN]进行初始化后加边
*/
#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#include<queue>
using namespace std; const int INF=0x3f3f3f3f;
const int MAXN=;
struct qnode{
int v;
int c;
qnode(int _v=,int _c=):v(_v),c(_c){}
bool operator <(const qnode &r)const{
return c>r.c;
}
};
struct Edge{
int v,cost;
Edge(int _v=,int _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
int dist[MAXN];
//点的编号从1开始
void Dijkstra(int n,int start){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=INF;
priority_queue<qnode>que;
while(!que.empty())que.pop();
dist[start]=;
que.push(qnode(start,));
qnode tmp;
while(!que.empty()){
tmp=que.top();
que.pop();
int u=tmp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=;i<E[u].size();i++){
int v=E[tmp.v][i].v;
int cost=E[u][i].cost;
if(!vis[v]&&dist[v]>dist[u]+cost){
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
void addedge(int u,int v,int w){
E[u].push_back(Edge(v,w));
} int main(){
int T,S,D;
int a,b,time;
int city1[MAXN];
int city2[MAXN]; while(~scanf("%d%d%d",&T,&S,&D)){
for(int i=;i<MAXN;++i){
E[i].clear();
} for(int i=;i<T;++i){
scanf("%d%d%d",&a,&b,&time);
addedge(a,b,time);//这里有重边了。。没办法,
addedge(b,a,time);
}
//0作为草儿家
for(int i=;i<S;++i){
scanf("%d",&city1[i]);
addedge(,city1[i],);
addedge(city1[i],,);
}
for(int i=;i<D;++i){
scanf("%d",&city2[i]);
} Dijkstra(MAXN-,);
int minTime=dist[city2[]];
for(int i=;i<D;++i){
if(dist[city2[i]]<minTime)
minTime=dist[city2[i]];
} printf("%d\n",minTime);
}
return ;
}

c3.单源最短路bellman_ford算法

/*
单源最短路bellman_ford算法
单源最短khtkbellman_ford算法,复杂度O(VE)
可以处理负边权图。
可以判断是否存在负环回路。返回true,当且仅当图中不包含从源点可达的负权回路
vector<Edge>E;先E.clear()初始化,然后加入所有边
点的编号从1开始(从0开始简单修改就可以了)
*/
#include<iostream>
#include<stdio.h>
#include<vector>
using namespace std; const int INF=0x3f3f3f3f;
const int MAXN=;
int dist[MAXN];
struct Edge{
int u,v;
int cost;
Edge(int _u=,int _v=,int _cost=):u(_u),v(_v),cost(_cost){}
};
vector<Edge>E;
//点的编号从1开始
bool bellman_ford(int start,int n){
for(int i=;i<=n;i++)dist[i]=INF;
dist[start]=;
//最多做n-1次
for(int i=;i<n;i++){
bool flag=false;
for(int j=;j<E.size();j++){
int u=E[j].u;
int v=E[j].v;
int cost=E[j].cost;
if(dist[v]>dist[u]+cost){
dist[v]=dist[u]+cost;
flag=true;
}
}
if(!flag)return true;//没有负环回路
}
for(int j=;j<E.size();j++)
if(dist[E[j].v]>dist[E[j].u]+E[j].cost)
return false;//有负环回路
return true;//没有负环回路
}
void addedge(int u,int v,int cost){
E.push_back(Edge(u,v,cost));
} int main(){
int T,S,D;
int a,b,time;
int city1[MAXN];
int city2[MAXN]; while(~scanf("%d%d%d",&T,&S,&D)){
E.clear(); for(int i=;i<T;++i){
scanf("%d%d%d",&a,&b,&time);
addedge(a,b,time);//有重边了。
addedge(b,a,time);
}
//0作为草儿家
for(int i=;i<S;++i){
scanf("%d",&city1[i]);
addedge(,city1[i],);
addedge(city1[i],,);
}
for(int i=;i<D;++i){
scanf("%d",&city2[i]);
} bellman_ford(,MAXN-);//MAXN-1
int minTime=dist[city2[]];
for(int i=;i<D;++i){
if(dist[city2[i]]<minTime)
minTime=dist[city2[i]];
} printf("%d\n",minTime);
}
return ;
}

c4.单源最短路SPFA

/*
单源最短路SPFA
时间复杂度O(kE)
这个是队列实现,有时候改成栈实现会更加快,很容易修改
这个复杂度是不定的
*/
#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#include<queue>
using namespace std; const int MAXN=;
const int INF=0x3f3f3f3f;
struct Edge{
int v;
int cost;
Edge(int _v=,int _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
void addedge(int u,int v,int w){
E[u].push_back(Edge(v,w));
}
bool vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int dist[MAXN];
bool SPFA(int start,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=INF;
vis[start]=true;
dist[start]=;
queue<int>que;
while(!que.empty())que.pop();
que.push(start);
memset(cnt,,sizeof(cnt));
cnt[start]=;
while(!que.empty()){
int u=que.front();
que.pop();
vis[u]=false;
for(int i=;i<E[u].size();i++){
int v=E[u][i].v;
if(dist[v]>dist[u]+E[u][i].cost){
dist[v]=dist[u]+E[u][i].cost;
if(!vis[v]){
vis[v]=true;
que.push(v);
if(++cnt[v]>n)return false;
//cnt[i] 为入队列次数,用来判定是否存在负环回路
}
}
}
}
return true;
} int main(){
int T,S,D;
int a,b,time;
int city1[MAXN];
int city2[MAXN]; while(~scanf("%d%d%d",&T,&S,&D)){
for(int i=;i<MAXN;++i){
E[i].clear();
} for(int i=;i<T;++i){
scanf("%d%d%d",&a,&b,&time);
addedge(a,b,time);//有重边了。
addedge(b,a,time);
}
//0作为草儿家
for(int i=;i<S;++i){
scanf("%d",&city1[i]);
addedge(,city1[i],);
addedge(city1[i],,);
}
for(int i=;i<D;++i){
scanf("%d",&city2[i]);
} SPFA(,MAXN-);//MAXN-1
int minTime=dist[city2[]];
for(int i=;i<D;++i){
if(dist[city2[i]]<minTime)
minTime=dist[city2[i]];
} printf("%d\n",minTime);
}
return ;
}

HDU - 2066 一个人的旅行(最短路径)(模板)的更多相关文章

  1. hdu 2066 一个人的旅行 最短路径

    一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  2. hdu 2066 一个人的旅行

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2066 一个人的旅行 Description 虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷 ...

  3. hdu 2066 一个人的旅行 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2066 题意分析:以草儿家为原点,给出城市间相互抵达的时间,给出草儿想去的城市,求最短时间.典型的单源最 ...

  4. HDU 2066 一个人的旅行 - from lanshui_Yang

    Problem Description 虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰 ...

  5. hdu 2066 一个人的旅行(最短路问题)

    最短路································· 类似的问题还有好多不会!慢慢学吧!!!!. 进步,哪怕每天一点也行! (恋爱不是小事,确实小事的积累!(听着酷狗音乐台说的,很 ...

  6. HDU 2066 一个人的旅行(dijkstra水题+判重边)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2066 题目大意:输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有 ...

  7. hdu 2066 一个人的旅行(dijkstra)

    一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. hdu 2066 一个人的旅行 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2066 题目意思:给出T条路,和草儿家相邻的城市编号,以及草儿想去的地方的编号.问从草儿家到达草儿想去的 ...

  9. hdu - 2066 一个人的旅行(基础最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=2066 把与草儿相连的城市最短距离置为0,然后进行dijkstra,在t个城市里找出距离最近的一个即可. #inc ...

随机推荐

  1. js作用域的几个问题

    按照<权威指南>的说法,全局的变量作用域是全局性的,在js代码中,他处处都有定义.而在函数之内声明的变量,就只有在函数体内有定义了.函数的参数也是局部变量,他们只在函数体内部有定义.在函数 ...

  2. zoj 2857 Image Transformation

    Image Transformation Time Limit: 2 Seconds      Memory Limit: 65536 KB The image stored on a compute ...

  3. 相应缓存设置HttpCacheability 枚举

      成员名称 说明   NoCache 设置 Cache-Control: no-cache 标头.如果没有字段名,则指令应用于整个请求,且在满足请求前,共享(代理服务器)缓存必须对原始 Web 服务 ...

  4. K-means算法-聚类

    算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的个各类的质心 4)迭代2~3步直至新的质心与原质心相 ...

  5. POJ 1486 Sorting Slides【二分图匹配】

    题目大意:有n张幻灯片和n个数字,幻灯片放置有重叠,每个数字隶属于一个幻灯片,现在问你能够确定多少数字一定属于某个幻灯片 思路:上次刷过二分图的必须点后这题思路就显然了 做一次二分匹配后将当前匹配的边 ...

  6. POJ 1273 Drainage Ditches【图论,网络流】

    就是普通的网络流问题,想试试新学的dinic算法,这个算法暑假就开始看国家集训队论文了,之前一直都只用没效率的EK算法,真正学会这个算法还是开学后白书上的描述:dinic算法就是不断用BFS构建层次图 ...

  7. 【dp】E. Selling Souvenirs

    http://codeforces.com/contest/808/problem/E 题意:给定n个重量为可能1,2,3的纪念品和各自的价值,问在背包总重量不超过m的条件下总价值最大为多少. 其中1 ...

  8. android中的OnClickListener两种实现方式

    android的activity点击事件中,通过OnClickListener来实现,要实现点击事件有两种方式 1.通过定义一个OnClickListener的内部类来实现 The example b ...

  9. poj2117求割点后最多的块。

    tarjan算法,枚举割点(注意此题无向图可能不连通),每个割点分割后最大块数+连通分量-1即可.开始老是TLE,后来比较了他人代码,只在vector<vector<int.>.&g ...

  10. Python基础之 一 文件操作

    文件操作 流程: 1:打开文件,得到文件句柄并赋值给一个变量 2:通过句柄对文件进行操作 3:关闭文件 模式解释 r(读) , w(写) ,a(附加)r+(读写的读), w+(读写的写),a+(读附加 ...