bzoj2216
决策单调性+整体二分
这里就是j<k且kj劣于j,j不会再选,所以我们整体二分
pos是因为从L->R中这个是最优点,所以对于mid+1->r选pos之前肯定不优,l->mid-1不会选>pos,因为每个位置都小于mid,并且pos->mid-1这段区间的决策点没有pos优,因为当前f[i]的i小于mid,选的决策的位置大于pos,由于i小于mid,所以sqrt(i-j),j越大,下降越快,所以pos+1->mid-1肯定没pos优
#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n;
int a[N], id[N];
double f1[N], f2[N];
double calc(int i, int j)
{
return (double)a[j] - (double)a[i] + sqrt(abs((double)i - (double)j));
}
void solve(int l, int r, int L, int R, double *f)
{
if(l > r) return;
int mid = (l + r) >> , lim = min(mid, R), pos = lim;
double mx = ;
for(int i = L; i <= lim; ++i) if(calc(mid, i) > mx)
{
mx = calc(mid, i);
pos = i;
}
f[id[mid]] = mx;
solve(l, mid - , L, pos, f);
solve(mid + , r, pos, R, f);
}
int main()
{
scanf("%d", &n);
for(int i = ; i <= n; ++i)
{
id[i] = i;
scanf("%d", &a[i]);
}
solve(, n, , n, f1);
reverse(a + , a + n + );
reverse(id + , id + n + );
solve(, n, , n, f2);
for(int i = ; i <= n; ++i) printf("%d\n", (int)ceil(max(f1[i], f2[i])));
return ;
}
bzoj2216的更多相关文章
- 【BZOJ2216】Lightning Conductor(动态规划)
[BZOJ2216]Lightning Conductor(动态规划) 题面 BZOJ,然而是权限题 洛谷 题解 \(\sqrt {|i-j|}\)似乎没什么意义,只需要从前往后做一次再从后往前做一次 ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)
即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...
- bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...
- [BZOJ2216]Lightning Conductor
原来决策单调性指的是这个东西... 一些DP可以写成$f_i=\max\limits_{j\lt i}g(i,j)$,设$p_i(p_i<j)$表示使得$g(i,j)$最大的$j$,如果$p_1 ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
- 【bzoj2216】[Poi2011]Lightning Conductor 1D1D动态规划优化
Description 已知一个长度为n的序列a1,a2,…,an.对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs ...
随机推荐
- zabbix web监控
深入浅出Zabbix 3.0 -- 第十章 Web 监控 http://www.mamicode.com/info-detail-1824545.html
- block: cfq 学习01
CFQ,即Completely Fair Queueing绝对公平调度器,力图为竞争块设备使用权的所有进程分配一个等同的时间片,在调度器分配给进程的时间片内,进程可以将其读写请求发送给底层块设备,当进 ...
- JPA 与 JDBC 的区别和基本用法
JPA 概念 JPA(Java Persistence API)用于对象持久化的 API,是 Java EE 5.0 平台标准的 ORM 规范,使得应用程序以统一的方式访问持久层. 与 JDBC 的对 ...
- ibatis常用16条SQL语句
(1) 输入参数为单个值 <delete id="com.fashionfree.stat.accesslog.deleteMemberAccessLogsBefore" p ...
- MyBatis 的基本要素—核心配置文件
MyBatis 核心配置文件( mybatis-config.xml),该文件配置了 MyBatis 的一些全局信息,包含数据库连接信息和 MyBatis 运行时所需的各种特性,以及设置和影响 MyB ...
- python3.x Day1 用户登录程序练习
训练1: 模拟登陆: 1. 用户输入帐号密码进行登陆 2. 用户信息保存在文件内 3. 用户密码输入错误三次后锁定用户 login2.py: #!/usr/bin/env python # -*- c ...
- 教你如何使用Python写游戏辅助脚本
主要实现方式是通过图片的对比,在游戏中就行点击.运行程序需要以下东西. PIL: 图片处理模块 (python3 换成了 pillow) 下载地址: https://www.lfd.uci. ...
- python基础学习 str,list,dict,set,range,enumerate
一.字符串 s = 'python' s1 = 'python' + 'learn' #相加其实就是简单拼接 s2 = 'python' * 5 #相乘其实就是复制自己多少次,再拼接在一起 字符串切片 ...
- exists关键词和case表达式
首先声明一下,exist和case没有必然联系,这里只是为了一起整理个笔记. EXIST谓词 如果存在对应的记录,返回TRUE.否则,返回FALSE.*实际使用中,即使不适用exist,基本也可以使用 ...
- Codeforces Round #235 (Div. 2)
A. Vanya and Cards time limit per test 1 second memory limit per test 256 megabytes input standard i ...