B1297 [SCOI2009]迷路 矩阵
这个题我觉得很有必要写一篇博客。首先,我们需要知道,假如一个邻接矩阵只有0/1构成,那么它自己的n次方就是走n步之后的方案数。但这个题还有2~9咋办呢。我们观察发现,这个题只有10个点,而且边权<=9我们可以想到拆点这个小操作。把每个点拆成9个点,点内连1的边,点外分别连到相应的权值就行了。
题干:
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 出发,他必须恰好在 T 时刻到达节点 N-。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;i++)
#define lv(i,a,n) for(register int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
const int mod = ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
int m,T;
struct Mat
{
int a[][],n;
Mat()
{
n = m * ;
clean(a);
}
void I()
{
// cout<<n<<endl;
duke(i,,n)
{
a[i][i] = ;
}
}
inline Mat operator * (const Mat &oth)
{
Mat res;
// cout<<n<<endl;
duke(i,,n)
{
duke(j,,n)
{
int sum = ;
duke(k,,n)
{
sum = (sum + a[i][k] * oth.a[k][j]) % mod;
}
res.a[i][j] = sum;
}
}
return res;
}
}A,B;
Mat qpow(Mat a,int k)
{
Mat c;
c.I();
// cout<<k<<endl;
while(k)
{
if(k % == )
{
c = c * a;
}
a = a * a;
k >>= ;
// cout<<k<<endl;
}
return c;
}
char s[];
int main()
{
read(m);read(T);
A.n = m * ;
duke(i,,m)
{
duke(j,,)
A.a[ * (i - ) + j][ * (i - ) + j + ] = ;
}
duke(i,,m)
{
scanf("%s",s);
duke(j,,m)
{
if(s[j - ] > '')
A.a[ * (i - ) + s[j - ] - ''][ * (j - ) + ] = ;
}
}
// cout<<"??"<<endl;
B = qpow(A,T);
printf("%d\n",B.a[][m * - ]);
return ;
}
/*
2 2
11
00
*/
B1297 [SCOI2009]迷路 矩阵的更多相关文章
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- 【bzoj1297】[SCOI2009]迷路 矩阵乘法
题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...
- Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...
- [luogu4159 SCOI2009] 迷路(矩阵乘法)
传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
随机推荐
- Monkey进行测试时如何屏蔽掉状态栏和音量键
我在学习的过程中使用简单的点击命令总是会触发到音量键和状态栏,由于我的测试机是虚拟按键所以也会触碰到 接下来说一下解决办法 全屏状态 adb shell settings put global po ...
- 「 Luogu P2285 」打鼹鼠
解题思路 第一眼看上去觉得要设计一个三维的 DP,$dp[i][j][k]$ 表示在 $(i,j)$ 这个位置上 $k$ 时刻能够打死的最多的鼹鼠. 但是被数据范围卡死.完全开不开数组啊. 然后注意到 ...
- CSS 嵌入,及其选择器
CSS 1. CSS样式表的几种使用方式 1.元素内嵌 <p style="font-size"></p> 2.内部文档内嵌 <style type= ...
- buf.readUInt32BE()函数详解
buf.readUInt32BE(offset[, noAssert]) buf.readUInt32LE(offset[, noAssert]) offset {Number} 0 noAssert ...
- accept阻塞
一直以来以为accept阻塞的时候,若另有线程关闭相应的监听套接字,accept会立即返回. 今天先是在NDK上试,没反应.又在ARCHLINUX试了下,还是没反应.难道是我一直记的都是错的!!!!! ...
- Navicat使用技巧
1.有时按快捷键Ctrl+F搜某条数据的时候搜不到,但是能用sql查出来,这是怎么回事? Ctrl+F只能搜本页数据,不在本页的数据搜不到,navicat每页只显示1000条数据.在数据多的时候nav ...
- 转载 - Vim 的 Python 编辑器详细配置过程 (Based on Ubuntu 12.04 LTS)
出处:http://www.cnblogs.com/ifantastic/p/3185665.html Vim 的 Python 编辑器详细配置过程 (Based on Ubuntu 12.04 LT ...
- Win32编程API 基础篇 -- 6.菜单和图标
菜单和按钮 例子:菜单1 本小节仅仅向你展示如果向你的窗口中加入一个基本的菜单,通常你会用到一个提前制作好的菜单资源,这会是一份.rc文件并且会被编译链接进你的.exe可执行程序中.这是具体的流程做法 ...
- poj——1330 Nearest Common Ancestors
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30082 Accept ...
- HDU——1787 GCD Again
题意: 在一次acm竞赛之后,你花了一些时间去思考和尝试解决那些未解决的问题吗? 不知道?哦,当你想成为“大牛”的时候,你就必须这样做. 现在你会发现,这个问题是如此熟悉: 两个正整数a和b的最大GC ...