Timus 1146. Maximum Sum
1146. Maximum Sum
Memory limit: 64 MB
| 0 | −2 | −7 | 0 |
| 9 | 2 | −6 | 2 |
| −4 | 1 | −4 | 1 |
| −1 | 8 | 0 | −2 |
Input
Output
Sample
| input | output |
|---|---|
4 |
15 |
最大子矩阵。很经典的问题哈哈
压缩 然后最大连续子序列 dp[i]=dp[i-1]<0?a[i]:dp[i-1]+a[i]
一开始压缩的时候没用前缀和,n^4 貌似过不了,后来用前缀和优化到n^3
下面代码中dp 的空间也可以优化,这里没有优化.
/* ***********************************************
Author :guanjun
Created Time :2016/10/7 13:50:13
File Name :timus1146.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int a[][],n;
int sum[][];
int dp[];
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(scanf("%d",&n)!=EOF){
cle(sum);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
sum[i][j]=sum[i][j-]+a[i][j];
}
}
int Max=-INF;
//dp 求最大连续子序列 dp[i]代表以i为结尾的最大连续子序列的长度
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
cle(dp);
for(int k=;k<=n;k++){
int tmp=sum[k][i]-sum[k][j-];
if(dp[k-]<){
dp[k]=tmp;
}
else dp[k]=tmp+dp[k-];
Max=max(dp[k],Max);
}
}
}
cout<<Max<<endl;
}
return ;
}
Timus 1146. Maximum Sum的更多相关文章
- ural 1146. Maximum Sum
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...
- 最大子矩阵和 URAL 1146 Maximum Sum
题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...
- ural 1146. Maximum Sum(动态规划)
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...
- URAL 1146 Maximum Sum(最大子矩阵的和 DP)
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...
- URAL 1146 Maximum Sum(DP)
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- URAL 1146 Maximum Sum 最大子矩阵和
题目:click here #include <bits/stdc++.h> using namespace std; typedef unsigned long long ll; con ...
- POJ2479 Maximum sum[DP|最大子段和]
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Des ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
随机推荐
- Windows提高_1.1内核对象
内核对象 什么是内核对象? 内核对象本质上是一个结构体,我们不能直接的操作一个内核对象,需要通过操作系统提供的一系列函数和我们使用的内核对象句柄对它进行一系列的修改. 如何操作内核对象? 创建一个内核 ...
- CAD得到所有实体2
主要用到函数说明: IMxDrawSelectionSet::Select2 构造选择集.详细说明如下: 参数 说明 [in] MCAD_McSelect Mode 构造选择集方式 [in] VARI ...
- 梦想CAD控件COM接口标注样式
增加标注样式 用户可以增加标注样式到数据库,具体实现c#代码如下: private void CreateDim() { //返回控件的数据库对象 MxDrawDatabase database = ...
- 梦想CAD控件安卓文字样式
增加文字样式 用户可以增加文字样式到数据库,并设置其字体等属性,具体实现代码如下: // 增加文字样式 //getCurrentDatabase()返回当前数据库对象 //getTextstyle() ...
- ThinkPHP---TP功能类之验证码
[一]验证码 验证码全称:captcha(全自动识别机器与人类的图灵测试),简单理解就是区分当前操作是人执行的还是机器执行的 常见验证码分3种:页面上图片形式.短信验证码(邮箱验证可以归类到短信验证码 ...
- 面试总结——Java高级工程师(一)
一.无笔试题 不知道是不是职位原因还是没遇到,面试时,都不需要做笔试题,而是填张个人信息表格,或者直接面试 二.三大框架方面问题 1.Spring 事务的隔离性,并说说每个隔离性的区别 解答:spri ...
- TestNG套件测试(一)
测试套件是用于测试软件程序的行为或一组行为的测试用例集合. 在TestNG中,我们无法在测试源代码中定义一个套件,但它可以由一个XML文件表示,可以灵活配置要运行的测试. 套件用<suite&g ...
- Django-REST-Framework JWT 实现SSO认证(下)
在上一篇博客中,我已经对JSON Web 认证做了简单的解释,这篇博客是续篇,若不了解,请看上一篇博客:https://www.cnblogs.com/yushenglin/p/10863184.ht ...
- LINUX-RPM 包 - (Fedora, Redhat及类似系统)
rpm -ivh package.rpm 安装一个rpm包 rpm -ivh --nodeeps package.rpm 安装一个rpm包而忽略依赖关系警告 rpm -U package.rpm 更新 ...
- 原生js实现三个按钮绑定三个计时器,点击其中一个按钮,开启当前计时器,另外另个不开启
今天在某个前端交流群,有个小伙伴问了一个小功能,自己想了一下,代码如下,可以实现基本功能: 下面是html结构 <div id="demo"> <input ty ...