# 题目大意

给出区间 $[a,b]$,求出区间中有多少数满足下列两个条件

  • 不含有前导 $0$。
  • 相邻两个数字之差的绝对值至少是 $2$。

# 解题思路

数位 $DP$,用记忆化搜索来实现。设 $dp[i][j]$ 表示现在已经枚举到第 $i$ 位,第 $i+1$ 位是 $j$ 时一共有多少满足条件的数。

还是直接看代码里的注释吧。

# 放上代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int HA = ;
//这里要设置为233,不能设置为int_max,会炸
int n, m, dp[][], num[];
inline int Abs(int x) {
return x> ? x : -x;
}
inline int dfs(int l, int pre, bool limit, bool Zero) {
if(l == ) return ;
//如果所有的位置都枚举完了,这显然就是一种可行方案
if(!Zero && !limit && dp[l][pre]) return dp[l][pre];
//没有前导0和限制是才能用通用答案
int ans = , mx = limit ? num[l] : ;
for(int i=; i<=mx; i++) {
if(Abs(i-pre) < ) continue;
int tmp = (i== && Zero) ? -HA : i;
//如果有前导0并且现在这一位是0,那就设置为一个负数
ans += dfs(l-, tmp, limit && (i == mx), tmp==-HA);
//前面的位有限制并且这一位到达了最高的数字那么限制就可以传递给下一位
}
if(!limit && !Zero) dp[l][pre] = ans;
//没有限制没有前导0才能够成为通用的答案
return ans;
}
inline int solve(int x) {
//将x分解
memset(num, , sizeof(num));
int k = ;
while (x) {
num[++k] = x % ;
x /= ;
}
return dfs(k, -HA, true, true); //第k位之前的一定是前导0
}
int main() {
scanf("%d%d", &n, &m);
printf("%d", solve(m)-solve(n-)); //类似前缀和
}

「 Luogu P2657 」 windy数的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  3. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

  4. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  5. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  6. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  7. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  8. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  9. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

随机推荐

  1. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  2. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  3. shiro之jdbcRealm

    Shiro认证过程 创建SecurityManager--->主体提交认证--->SecurityManager认证--->Authenticsto认证--->Realm验证 ...

  4. springMVC RedirectAttributes

    @Controller public class TestController { @RequestMapping("/redirectDemo") public String r ...

  5. 重置iptables

    # reset the default policies in the filter table.iptables -P INPUT ACCEPTiptables -P FORWARD ACCEPTi ...

  6. [Usaco2008 Feb]Eating Together麻烦的聚餐

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  7. JSON(2)JSONObject解析Josn和创建Jsonf示例

    1.解析Json /* * test.josn内容如下: { "languages":[ {"id":"1","name" ...

  8. C#委托的用法 在C#中我想在一个方法中调用另一个按钮的事件,怎样来实现?

    最开始我也不清楚,后来我是这样想了. 1.事件和委托不是一个概念,你如果是调用control的事件,可以直接在其对应的事件eventhandler上attach自己的事件方法就好了如:this.But ...

  9. spark调试环境搭建

    到目前为止,基于RDD的spark streamming实时应用和离线应用(主要解析日志)已经写了一些,但是对spark的了解还是很少,所以决心花点精力,对spark做一些比较深入的了解和学习.参照之 ...

  10. 解决okHttp使用https抛出stream was reset: PROTOCOL_ERROR的问题

    昨天在做Android接口调用的时候,api接口是https的,用okhttp抛出: okhttp3.internal.http2.StreamResetException: stream was r ...