题目描述

  对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值:

  对于每个\(a_i\),如果存在一个最小的\(j\)使得\(i<j\)且\(a_i<a_j\),那么将\(a_i\)和\(a_j\)连一条无向边。于是就得到一幅图。计算这幅图每个联通块的大小,将它们相乘,得到\(P\)。记\(Q=P^k\)。

  对于\(1\)到\(n\)的所有排列,我们想知道它们的\(Q\)值之和。由于答案可能很大,请将答案对\(998244353\)取模。

  \(n,k\leq 100000\)

题解

  考虑从小到大插入这\(n\)个数。

  设\(f_i\)为所有\(1\)~\(i\)的排列的\(Q\)值之和。

  考虑\(i\)的位置,当\(i\)在第\(j\)个位置的时候,前面\(j\)个点是联通的,后面\(i-j\)个点与前面\(j\)个点不连通。

\[\begin{align}
f_i&=\sum_{j=1}^i\binom{i-1}{j-1}(j-1)!j^kf_{i-j}\\
f_i&=\sum_{j=1}^i\frac{(i-1)!j^kf_{i-j}}{(i-j)!}\\
f_i&=(i-1)!\sum_{j=1}^ij^k\frac{f_{i-j}}{(i-j)!}
\end{align}
\]

  用分治FFT加速。

  时间复杂度:\(O(n\log k+n\log^2n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const ll p=998244353;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
namespace ntt
{
const ll g=3;
ll w1[270010];
ll w2[270010];
int rev[270010];
int n;
void init(int m)
{
n=1;
while(n<m)
n<<=1;
int i;
for(i=2;i<=n;i<<=1)
{
w1[i]=fp(g,(p-1)/i);
w2[i]=fp(w1[i],p-2);
}
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
}
void ntt(ll *a,int t)
{
ll u,v,w,wn;
int i,j,k;
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=w*wn%p;
}
}
}
if(t==-1)
{
ll inv=fp(n,p-2);
for(i=0;i<n;i++)
a[i]=a[i]*inv%p;
}
}
ll x[270010];
ll y[270010];
void copy_clear(ll *a,ll *b,int m)
{
int i;
for(i=0;i<m;i++)
a[i]=b[i];
for(i=m;i<n;i++)
a[i]=0;
}
void copy(ll *a,ll *b,int m)
{
int i;
for(i=0;i<m;i++)
a[i]=b[i];
}
void inverse(ll *a,ll *b,int m)
{
if(m==1)
{
b[0]=fp(a[0],p-2);
return;
}
inverse(a,b,m>>1);
init(2*m);
copy_clear(x,a,m);
copy_clear(y,b,m>>1);
ntt(x,1);
ntt(y,1);
int i;
for(i=0;i<n;i++)
x[i]=(2*y[i]%p-x[i]*y[i]%p*y[i]%p+p)%p;
ntt(x,-1);
copy(b,x,m);
}
};
ll fac[300010];
ll ifac[300010];
ll inv[300010];
ll f[300010];
ll a[300010];
ll b[300010];
ll ex[300010];
int n,k;
void solve(int l,int r)
{
if(l==r)
{
f[l]=f[l]*fac[l-1]%p;
return;
}
int mid=(l+r)>>1;
solve(l,mid);
ntt::init(r-l+1);
int i;
for(i=l;i<=mid;i++)
a[i-l]=f[i]*ifac[i];
for(i=l;i<=r;i++)
b[i-l]=ex[i-l];
for(i=mid-l+1;i<ntt::n;i++)
a[i]=0;
for(i=r-l+1;i<ntt::n;i++)
b[i]=0;
ntt::ntt(a,1);
ntt::ntt(b,1);
for(i=0;i<ntt::n;i++)
a[i]=a[i]*b[i]%p;
ntt::ntt(a,-1);
for(i=mid+1;i<=r;i++)
f[i]+=a[i-l];
solve(mid+1,r);
}
int main()
{
open("xsy2166");
scanf("%d%d",&n,&k);
int i;
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
for(i=2;i<=n;i++)
{
inv[i]=-(p/i)*inv[p%i]%p;
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
for(i=1;i<=n;i++)
{
ex[i]=fp(i,k);
f[i]=ex[i];
}
solve(1,n);
ll ans=(f[n]+p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2166】Hope 分治 FFT的更多相关文章

  1. BNUOJ 51279[组队活动 Large](cdq分治+FFT)

    传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...

  2. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. 分治FFT的三种含义

    分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\( ...

  5. 【XSY2666】排列问题 DP 容斥原理 分治FFT

    题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...

  6. 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp

    题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...

  7. prime distance on a tree(点分治+fft)

    最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...

  8. 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理

    题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...

  9. 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数

    CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...

随机推荐

  1. MySQL添加用户错误:ERROR 1364 (HY000): Field 'ssl_cipher' doesn't have a default value解决方法

    MySQL添加新用户时出现如下报错,如下图: 经过查资料了解到: mysql用户表的中某些字段不能为空,没有默认值,其实是操作错误,mysql添加用户是不能这样直接insert user表的. 改为以 ...

  2. ImportError: DLL load failed: 找不到指定的模块。

    这里用的anacoda,报错是找不到DLL,可能是该DLL的环境变量没配置,配置系统环境变量: 重启一下pycharm,OK.

  3. 每周分享之JS数组的使用

    数组,一堆数字归为一组,就是一个数组,一堆对象放在一个组里,也是一个数组,概念很容易懂,说白了就是一个有限集合. JS数组的语法无法两种,插入和移除(语法自行科普).用处挺常见的,既然数组是一个集合, ...

  4. kubectl常用命令汇总

    #查看k8s的所有node节点 kubectl get node #查看ns的pod kubectl get pod --all-namespaces -o wide kubectl get pod ...

  5. 爬虫——scrapy框架

    Scrapy是一个异步处理框架,是纯Python实现的爬虫框架,其架构清晰,模块之间的耦合程度低,可拓展性强,可以灵活完成各种需求.我们只需要定制几个模块就可以轻松实现一个爬虫. 1.架构  Scra ...

  6. cent6.x配置主机名及静态网络

    # 修改网卡名为NAME="eth0" [root@jenkins ~]# -persistent-net.rules # This file was automatically ...

  7. 6-1 Quantifiers

    1 Quantifiers are used to describe the number or amount of something. Certain quantifiers are used w ...

  8. Azure系列2.1.14 —— CopyState

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  9. 【学亮开讲】Oracle内外连接查询20181119

    --内连接查询 --需求:查询显示业主编号.业主名称.业主类型名称 select os.id 业主编号,os.name 业主名称,ot.name 业主类型名称 from t_owners os,t_o ...

  10. Angular 自定义指令传参

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...