BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html
题目传送门 - BZOJ4553
题目传送门 - 洛谷P4093
题解
设$Li$表示第$i$个位置最小值,$Ri$表示最大值$vi$表示原值。
那么如果$i$能到$j$这个位置,则满足:
$i<j$
$rj\leq xi$
$xi\leq li$
于是CDQ分治水过。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=100005;
struct Node{
int id,v,L,R,res,x,y;
void get(){
scanf("%d",&v),L=R=v,res=1;
}
}a[N];
bool cmp(Node a,Node b){
if (a.x!=b.x)
return a.x<b.x;
if (a.y!=b.y)
return a.y<b.y;
return a.id<b.id;
}
bool cmpid(Node a,Node b){
return a.id<b.id;
}
int n,m,tree[N];
int lowbit(int x){
return x&-x;
}
void add(int x,int y){
for (;x<=100000;x+=lowbit(x))
tree[x]=max(tree[x],y);
}
void clr(int x){
for (;x<=100000;x+=lowbit(x))
tree[x]=0;
}
int sum(int x){
int ans=0;
for (;x>0;x-=lowbit(x))
ans=max(ans,tree[x]);
return ans;
} void CDQ(int L,int R){
if (L==R)
return;
int mid=(L+R)>>1;
CDQ(L,mid);
for (int i=L;i<=mid;i++)
a[i].x=a[i].R,a[i].y=a[i].v;
for (int i=mid+1;i<=R;i++)
a[i].x=a[i].v,a[i].y=a[i].L;
sort(a+L,a+R+1,cmp);
for (int i=L;i<=R;i++)
if (a[i].id<=mid)
add(a[i].y,a[i].res);
else
a[i].res=max(a[i].res,sum(a[i].y)+1);
for (int i=L;i<=R;i++)
if (a[i].id<=mid)
clr(a[i].y);
sort(a+L,a+R+1,cmpid);
CDQ(mid+1,R);
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
a[i].get(),a[i].id=i;
for (int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
a[x].L=min(a[x].L,y);
a[x].R=max(a[x].R,y);
}
memset(tree,0,sizeof tree);
CDQ(1,n);
int ans=0;
for (int i=1;i<=n;i++)
ans=max(ans,a[i].res);
printf("%d",ans);
return 0;
}
BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治的更多相关文章
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告
P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...
- 洛谷P4093 [HEOI2016/TJOI2016]序列
题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性, ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列(Cdq+dp)
题面 luogu 题解 \(Cdq分治+dp\) \(mx[i],mn[i]\)分别表示第\(i\)位最大,最小能取到多少 那么有 \(j < i\) \(mx[j] \le a[i]\) \( ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告
P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...
- 【洛谷P4093】 [HEOI2016/TJOI2016]序列 CDQ分治+动态规划
你发现只会改变一个位置,所以可以直接进行dp 具体转移的话用 CDQ 分治转移就好了~ #include <bits/stdc++.h> #define N 100006 #define ...
- Luogu P4093 [HEOI2016/TJOI2016]序列 dp套CDQ
题面 好久没写博客了..最近新学了CDQ...于是就来发一发一道CDQ的练习题 看上去就是可以dp的样子. 设\(dp_{i}\)为以i结尾的最长不下降序列. 易得:\(dp_{i}\)=\(max( ...
- 洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)
传送门 这题的思路好清奇 因为只有一次查询,我们考虑二分这个值为多少 将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$ 那么排序就可以用线段树优化,设该区间内$1$ ...
随机推荐
- 【原创】大叔问题定位分享(33)beeline连接presto报错
hive2.3.4 presto0.215 使用hive2.3.4的beeline连接presto报错 $ beeline -d com.facebook.presto.jdbc.PrestoDriv ...
- 【进阶1-4期】JavaScript深入之带你走进内存机制(转)
这是我在公众号(高级前端进阶)看到的文章,现在做笔记 https://mp.weixin.qq.com/s/yK4DPKhkmkiroasWJMrJcw 阅读笔记 JS内存空间分为栈(stack).堆 ...
- Confluence 6 指定日志选项和已知问题
指定 Confluence 日志选项 这里是一些特定的日志配置,你可能在对问题进行调试的时候需要. 在日志中记录数据库使用的 SQL 查询请求 你可能希望增加日志的中的内容,记录 Confluence ...
- Confluence 6 XML 备份恢复失败的问题解决
XML 站点备份仅仅针对新数据库恢复的时候是必要的. Upgrading Confluence,Setting up a test server 或者 Production Backup Strate ...
- nodejs之glob与globby
glob glob允许使用规则,从而获取对应规则匹配的文件.这个glob工具基于javascript.它使用了 minimatch 库来进行匹配 安装 npm install glob 引入 cons ...
- Mysql哪些字段适合建立索引
数据库建立索引常用的规则如下: 1.表的主键.外键必须有索引: 2.数据量超过300的表应该有索引: 3.经常与其他表进行连接的表,在连接字段上应该建立索引: 4.经常出现在Where子句中的字段,特 ...
- 断路器Ribbon
断路器:就是对服务访问不到的情况做出自己的错误,也就是故障转移(将当前出现故障的请求重新返回特定消息) 改造消费者项目(RibbonDemo) 1.在pom.xml中引入hystrix的jar包 &l ...
- SpringMVC类型转换,验证
点击上一章-SpringMVC视图及REST风格 Spring mvc 数据绑定流程: SpringMvc将ServletRequest对象及目标方法的形参实例传给WebDataBinderFacto ...
- 使用pm2离线部署nodejs项目
1.下载https://npm.taobao.org/mirrors/node/v8.11.1/node-v8.11.1-linux-x64.tar.xz 比如安装到/opt目录 xz -d node ...
- linux下安装mysql-5.6.41
1.下载安装包,下载地址:https://dev.mysql.com/downloads/mysql/5.7.html#downloads .选择完版本,然后点击下方 No thanks, just ...