Extending Set of Points

我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和。

然后就变成了一个并查集的问题, 但是这个题目里面有撤销的操作, 所以我们要把加入和撤销操作变成

这个点影响(L , R)之间的询问, 然后把它丢到线段树里面分成log段, 然后我们dfs一遍线段树, 用按秩合并
并查集取维护, 回溯的时候将并查集撤销。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int n;
LL ans[N];
map<PII, int> Map; int fa[N << ], cntx[N << ], cnty[N << ], sz[N << ];
LL now = ; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
vector<PII> vc[N << ];
void Insert(int L, int R, PII e, int l, int r, int rt) {
if(l >= L && r <= R) {
vc[rt].push_back(e);
return;
}
int mid = l + r >> ;
if(L <= mid) Insert(L, R, e, lson);
if(R > mid) Insert(L, R, e, rson);
} int getRoot(int x) {
return fa[x] == x ? x : getRoot(fa[x]);
} void Merge(int x, int y, stack<PII>& stk) {
int fax = getRoot(x);
int fay = getRoot(y);
if(fax != fay) {
if(sz[fax] < sz[fay]) swap(fax, fay);
stk.push(mk(fax, fay));
now -= 1ll * cntx[fax] * cnty[fax];
now -= 1ll * cntx[fay] * cnty[fay];
sz[fax] += sz[fay];
cntx[fax] += cntx[fay];
cnty[fax] += cnty[fay];
fa[fay] = fax;
now += 1ll * cntx[fax] * cnty[fax];
}
} void Delete(stack<PII>& stk) {
while(!stk.empty()) {
int fax = stk.top().fi;
int fay = stk.top().se;
stk.pop();
now -= 1ll * cntx[fax] * cnty[fax];
sz[fax] -= sz[fay];
cntx[fax] -= cntx[fay];
cnty[fax] -= cnty[fay];
fa[fay] = fay;
now += 1ll * cntx[fax] * cnty[fax];
now += 1ll * cntx[fay] * cnty[fay];
}
} void dfs(int l, int r, int rt) {
stack<PII> stk;
for(auto& t : vc[rt]) Merge(t.fi, t.se, stk);
if(l == r) ans[l] = now;
else {
int mid = l + r >> ;
dfs(l, mid, rt << );
dfs(mid + , r, rt << | );
}
Delete(stk);
} int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) {
PII e; scanf("%d%d", &e.fi, &e.se);
e.se += ;
if(Map.find(e) == Map.end()) {
Map[e] = i;
} else {
Insert(Map[e], i - , e, , n, );
Map.erase(e);
}
}
for(auto& t : Map) Insert(t.se, n, t.fi, , n, );
for(int i = ; i <= ; i++) fa[i] = i, cntx[i] = , sz[i] = ;
for(int i = ; i <= ; i++) fa[i] = i, cnty[i] = , sz[i] = ;
dfs(, n, );
for(int i = ; i <= n; i++) printf("%lld ", ans[i]);
puts("");
return ;
} /*
*/

Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)的更多相关文章

  1. Codeforces 1140F Extending Set of Points (线段树分治+并查集)

    这题有以下几个步骤 1.离线处理出每个点的作用范围 2.根据线段树得出作用范围 3.根据分治把每个范围内的点记录和处理 #include<bits/stdc++.h> using name ...

  2. 【CF576E】Painting Edges 线段树按时间分治+并查集

    [CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...

  3. BZOJ_4025_二分图_线段树按时间分治+并查集

    BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...

  4. BZOJ.3673/3674.可持久化并查集(可持久化线段树 按秩合并/启发式合并)

    BZOJ 3673 BZOJ 3674(加强版) 如果每次操作最多只修改一个点的fa[],那么我们可以借助可持久化线段树来O(logn)做到.如果不考虑找fa[]的过程,时空复杂度都是O(logn). ...

  5. CF1140F Extending Set of Points 【按时间分治,并查集】

    题目链接:洛谷 首先我们考虑没有撤回操作的情况,就是将每一行和每一列看做一个点(代表行的称为白点,代表列的称为黑点),每个点$(x,y)$看做一条边. Extend操作实际上就是$x_1$行与$y_1 ...

  6. 线段树区间离散化维护按秩合并并查集(可撤销)——牛客多校第八场E

    模板题..去网上学了可撤销的并查集.. /* 给定一个无向图,边的属性为(u,v,l,r),表示<u,v>可以通过的size为[l,r] 求出有多少不同的size可以从1->n 把每 ...

  7. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  8. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  9. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

随机推荐

  1. zabbix批量监控urls的状态码

    .添加url监控脚本 [root@node1 usr]# vim /usr/local/zabbix_agents_3.2.0/scripts/web_site_code_status.sh #!/b ...

  2. Tornado学习笔记(三) 请求方式/状态码

    本章我们来学习 Tornado 支持的请求方式 请求方式 Tornado支持任何合法的HTTP请求(GET.POST.PUT.DELETE.HEAD.OPTIONS).你可以非常容易地定义上述任一种方 ...

  3. PID控制器开发笔记之九:基于前馈补偿的PID控制器的实现

    对于一般的时滞系统来说,设定值的变动会产生较大的滞后才能反映在被控变量上,从而产生合理的调节.而前馈控制系统是根据扰动或给定值的变化按补偿原理来工作的控制系统,其特点是当扰动产生后,被控变量还未变化以 ...

  4. 一种基于NTC的控温电路及软件实现

    NTC(Negative Temperature Coefficient)是一种随温度上升时,电阻值呈指数关系减小的热敏电阻.应用广泛,最近我们就采用了NTC来控制加热并测温,并达到了预期的效果. 1 ...

  5. Confluence 6 升级自定义的站点和空间应用你的自定义布局

    当你升级你的 Confluence 到其他一个主要的 Confluence 发行版本的时候,你需要手动应用你修改过的任何全局或者空间级别的布局.除非有特殊的声明,针对一些非主要的 Confluence ...

  6. Vue2 Virtual DOM

    vue 虚拟dom 的重点 是以 javascript 对象模拟 dom 节点. //用Javascript代码表示DOM节点的伪代码 Let domNode = { tag: 'ul' attrib ...

  7. nginx常用命令及简单配置

    nginx常用命令 nginx -c /usr/local/nginx/conf/nginx.conf 启动nginx(windows下start nginx); nginx -s quit 停止ng ...

  8. 第十四单元 Linux网络原理及基础设置

    ·ifconfig命令来维护网络(详见linux系统管理P422) 1) 掌握ifconfig命令的功能:显示所有正在启动的网卡的详细信息或设定系统中网卡的IP地址.2) 灵活应用ifconfig命令 ...

  9. 用mybatis做数据库处理 代码中的字段大小写 要和mapper映射设置的大小写一致(这TM不废话么,原谅我渣!~~)

    简单描述情况:其实这个问题怎么说呢,有人给你说,你肯定能意识到,必须大小写对应的嘛.emmmm我现在才意识到是因为:自己在下边敲代码,配的mapper文件并没有把属性变量,和数据库里的段单独提出来做映 ...

  10. Linux编程学习笔记(二)

    续上个章节,这个章节主要是Linux的远程登录系统操作笔记 一. Linux一般作为服务器使用,但是服务器都是在机房的,所以不可能经常跑到机房去操作系统,所以使用远程登录系统,在Linux的系统一般使 ...