要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。

Input数据的第一行是一个T,表示有T组数据。 
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。Output对应每组数据输出(A/B)%9973。Sample Input

2
1000 53
87 123456789

Sample Output

7922
6060 解析:
  A = 9973 * y + n
  A = x * B
  所以 x * B - y * 9973 = n
  带入exgcd时y的正负不影响 反正又不用y
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
int T;
cin >> T;
while(T--)
{
LL n, a, b;
LL x, y, d;
cin >> n >> a;
b = ;
exgcd(a, b, d, x, y);
b /= d;
x *= n / d;
x = (x % b + b) % b;
cout << x << endl;
}
return ;
}
												

A/B HDU - 1576 (exgcd)的更多相关文章

  1. A * B Problem Plus HDU - 1402 (FFT)

    A * B Problem Plus HDU - 1402 (FFT) Calculate A * B.  InputEach line will contain two integers A and ...

  2. D - 淡黄的长裙 HDU - 4221(贪心)

    D - 淡黄的长裙 HDU - 4221(贪心) James is almost mad! Currently, he was assigned a lot of works to do, so ma ...

  3. 扩展欧几里得算法(EXGCD)学习笔记

    0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...

  4. hdu 5055(坑)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5055 Bob and math problem Time Limit: 2000/1000 MS ( ...

  5. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  6. hdu 5391 (数论)

    Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Oth ...

  7. hdu 5534(dp)

    Input The first line contains an integer T indicating the total number of test cases. Each test case ...

  8. A - Dogs and Cages HDU - 6243(组合数学)

    题意:在1—n的数字,放入编号为1—n的框中,每个框只放一个数字,问数字与所放的框的编号不同的个数的期望值. 思路:在1—n中任选一个数字,设为k 那么 k 排到非k编号的框中的方案数为 n!-(n- ...

  9. HDU 4545 (模拟) 魔法串

    题目链接 Problem Description 小明和他的好朋友小西在玩一个新的游戏,由小西给出一个由小写字母构成的字符串,小明给出另一个比小西更长的字符串,也由小写字母组成,如果能通过魔法转换使小 ...

随机推荐

  1. Jenkins-job之间依赖关系配置

    使用场景: 想要在某APP打新包之后,立即执行自动化测试的job来验证该新包. 比如Job A 执行完执行Job B ,如下图所示,如何建立依赖呢? 1.配置上游依赖 构建触发器-配置如下信息: 选择 ...

  2. 二、截取字符串长度(css方式)

    只针对谷歌 width: 100%; //height: 58px; overflow:hidden; text-overflow:ellipsis; display: -webkit-box; -w ...

  3. myeclipse使用hibernate5框架load延迟装载对象报错_$$_javassist_0 cannot be cast to javassist.util.proxy.Proxy

    jar包问题,将hibernate-core-5.0.12.Final.jar删除,换为hibernate-core-4.2.3.final.jar搞定.注意项目运行过后可能删不掉jar包,只需关闭m ...

  4. Python里面如何拷贝一个对象

    1.赋值(=),就是创建了对象的一个新的引用,修改其中任意一个变量都会影响到另一个. In [168]: a Out[168]: [1, 2, 3] In [169]: b=a In [170]: a ...

  5. 使用Request+正则抓取猫眼电影(常见问题)

    目前使用Request+正则表达式,爬取猫眼电影top100的例子很多,就不再具体阐述过程! 完整代码github:https://github.com/connordb/Top-100 总结一下,容 ...

  6. 使用ThreadLocal管理Mybatis中SqlSession对象

    转自http://blog.csdn.net/qq_29227939/article/details/52029065 public class MybatisUtil { private stati ...

  7. 【转帖】Linux定时任务Crontab命令详解

    Linux定时任务Crontab命令详解 https://www.cnblogs.com/intval/p/5763929.html 知道有crontab 以及 at 命令 改天仔细学习一下 讲sys ...

  8. Windows 机器上面同时安装mysql5.6 和 mysql5.7 的方法

    1. 自己遇到的两个坑: . mysql 登录的时候 需要使用-P 来指定端口号 不然默认走 呢 . mysql 5.6 和 mysql 5.7 更改用户密码的命令不一样.. 我这边浪费了很长时间: ...

  9. 浅谈WPF的VisualBrush

    首先看看VisualBrush的解释,msdn上面的解释是使用 Visual 绘制区域,那么我们再来看看什么是Visual呢?官方的解释是:获取或设置画笔的内容,Visual 是直接继承自Depend ...

  10. python数学第八天【协方差】