1076E - Vasya and a Tree(图的遍历)
题意:给出一棵根节点为1的树,执行m次修改操作,每次修改为a,b,c,表示a节点的子树中,距离a小于等于b的子节点的权值加上c,求m次操作后每个节点的权值
分析:用线段树维护每层节点的权值,然后dfs遍历这颗树,当前节点有操作时,把当前节点的深度到被修改的最大深度都加上c(实际上只有当前节点的子节点才加c),而回朔的时候再将这个区间减c,这样就避免了对非子节点的影响
AC代码(线段树的区间更新):
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=3e5+10;
ll f[maxn],nex[maxn*2],to[maxn*2],cnt,level[maxn],n,m;
ll ans[maxn],num[maxn*4],lazy[maxn*4];
vector<pair<ll,ll>>ve[maxn];
void add(int a,int b)
{
cnt++;
to[cnt]=b;
nex[cnt]=f[a];
f[a]=cnt;
}
void updata(int st,int en,int l,int r,int rt,ll x)
{
//cout<<l<<" "<<r<<endl;
if(st<=l&&en>=r)
{
num[rt]+=x*(r-l+1);
lazy[rt]+=x;
return ;
}
int mid=(l+r)/2;
if(lazy[rt])
{
lazy[rt*2]+=lazy[rt];
lazy[rt*2+1]+=lazy[rt];
num[rt*2]+=lazy[rt]*(mid-l+1);
num[rt*2+1]+=lazy[rt]*(r-mid);
lazy[rt]=0;
}
if(st<=mid)updata(st,en,l,mid,rt*2,x);
if(en>=mid+1)updata(st,en,mid+1,r,rt*2+1,x);
num[rt]=num[rt*2]+num[rt*2+1];
}
ll quer(int x,int l,int r,int rt)
{
int mid=(l+r)/2;
if(l==r)return num[rt];
if(lazy[rt])
{
lazy[rt*2]+=lazy[rt];
lazy[rt*2+1]+=lazy[rt];
num[rt*2]+=lazy[rt]*(mid-l+1);
num[rt*2+1]+=lazy[rt]*(r-mid);
lazy[rt]=0;
}
if(x<=(l+r)/2)return quer(x,l,(l+r)/2,rt*2);
else return quer(x,(l+r)/2+1,r,rt*2+1);
num[rt]=num[rt*2]+num[rt*2+1];
}
void getlevel(int x,int l)
{
level[x]=l;
for(int i=f[x]; i; i=nex[i])
{
int v=to[i];
if(!level[v])getlevel(v,l+1);
}
}
void dfs(int x,int pre)
{
for(int i=0; i<ve[x].size(); i++)
{
updata(level[x],level[x]+ve[x][i].first,1,n,1,ve[x][i].second);
}
ans[x]=quer(level[x],1,n,1);
for(int i=f[x]; i; i=nex[i])
{
int v=to[i];
if(v!=pre)
dfs(v,x);
}
for(int i=0; i<ve[x].size(); i++)
{
updata(level[x],level[x]+ve[x][i].first,1,n,1,-ve[x][i].second);
}
}
int main()
{
ios::sync_with_stdio(false); cin>>n;
for(int i=1; i<=n-1; i++)
{
int a,b;
cin>>a>>b;
add(a,b);
add(b,a);
}
getlevel(1,1);
cin>>m;
for(int i=1; i<=m; i++)
{
ll a,b,c;
cin>>a>>b>>c;
ve[a].push_back(make_pair(b,c));
} dfs(1,-1);
for(int i=1; i<=n; i++)
cout<<ans[i]<<" ";
cout<<endl;
return 0;
}
AC代码(树状数组的区间更新):
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=3e5+10;
ll f[maxn],nex[maxn*2],to[maxn*2],cnt,n,m;
ll ans[maxn],c1[maxn],c2[maxn];
vector<pair<int,ll>>ve[maxn];
void add1(int a,int b)
{
cnt++;
to[cnt]=b;
nex[cnt]=f[a];
f[a]=cnt;
}
void add(int x,ll y)
{
for(int i=x; i<=n; i+=(i&-i))c1[i]+=y,c2[i]+=y*x;
}
ll quer(int x)
{
ll res=0;
for(int i=x; i>0; i-=(i&-i))res+=((x+1)*c1[i]-c2[i]);
return res;
}
void in_add(int l,int r,ll x)
{
add(l,x);
add(r+1,-x);
}
void dfs(int x,int pre,int l)
{
for(int i=0; i<ve[x].size(); i++)
in_add(l,l+ve[x][i].first,ve[x][i].second);
ans[x]=quer(l)-quer(l-1);
for(int i=f[x]; i; i=nex[i])
{
int v=to[i];
if(v!=pre)
dfs(v,x,l+1);
}
for(int i=0; i<ve[x].size(); i++)
in_add(l,l+ve[x][i].first,-ve[x][i].second);
}
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=1; i<=n-1; i++)
{
int a,b;
cin>>a>>b;
add1(a,b);
add1(b,a);
}
cin>>m;
for(int i=1; i<=m; i++)
{
ll a,b,c;
cin>>a>>b>>c;
ve[a].push_back(make_pair(b,c));
}
dfs(1,-1,1);
for(int i=1; i<=n; i++)
cout<<ans[i]<<" ";
cout<<endl;
return 0;
}
1076E - Vasya and a Tree(图的遍历)的更多相关文章
- Codeforces 1076E Vasya and a Tree(树状数组)或dfs
题意:给你一颗以1为根节点的树,初始所有节点的权值为0,然后有m个操作,每个操作将点x的所有距离不超过d的节点权值+1,问经过m次操作后每个节点权值是多少? 思路:如果是一个序列,就可以直接用树状数组 ...
- CF 1076E Vasya and a Tree(线段树+树剖)
传送门 解题思路 首先按照每个修改时\(x\)的深度\(+d\)从大到小排序,然后按照深度分层,一层一层的修改,修改的时候就直接暴力修改子树,然后每做完一层把答案都取下来,因为以后的所有修改的深度都小 ...
- codeforces 1076E Vasya and a Tree 【dfs+树状数组】
题目:戳这里 题意:给定有n个点的一棵树,顶点1为根.m次操作,每次都把以v为根,深度dep以内的子树中所有的顶点(包括v本身)加x.求出最后每个点的值为多少. 解题思路:考虑到每次都只对点及其子树操 ...
- Vasya and a Tree CodeForces - 1076E(线段树+dfs)
I - Vasya and a Tree CodeForces - 1076E 其实参考完别人的思路,写完程序交上去,还是没理解啥意思..昨晚再仔细想了想.终于弄明白了(有可能不对 题意是有一棵树n个 ...
- Vasya and a Tree CodeForces - 1076E (线段树 + dfs)
题面 Vasya has a tree consisting of n vertices with root in vertex 1. At first all vertices has 0 writ ...
- CodeForces-1076E Vasya and a Tree
CodeForces - 1076E Problem Description: Vasya has a tree consisting of n vertices with root in verte ...
- 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)
图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...
- C++编程练习(9)----“图的存储结构以及图的遍历“(邻接矩阵、深度优先遍历、广度优先遍历)
图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用 ...
- Kruskal和prime算法的类实现,图的遍历BFS算法。
一.图的遍历 #include<iostream> #include<queue> #include<vector> using namespace std; in ...
随机推荐
- C#-封装(七)
封装概念 C#是面向对象的一门语言,面向对象的语言有三大特性:封装.继承.多态.而封装可以实现一个自定义的类,从而定义新的对象 封装是将一个或多个项目集合在一个单元中,这个单元称之为类.这样可以防止对 ...
- 语句调优基础知识-set statistics io on
set statistics io on --清空缓存数据 dbcc dropcleanbuffers go --清空缓存计划 dbcc freeproccache go set statistics ...
- 自动化测试基础篇--Selenium鼠标键盘事件
摘自https://www.cnblogs.com/sanzangTst/p/7477382.html 前面几篇文章我们学习了怎么定位元素,同时通过实例也展示了怎么切换到iframe,怎么输入用户名和 ...
- 使用administrator身份启动Vs2017
日常开发中有些项目工程需要按照Administrator 身份进行启动,我们的操作是在vs2017 上右键,administrator 身份启动. 如下图: 但是这样每次都要右键,移动鼠标进行点击. ...
- Vue学习之路4-v-bind指令
1. 定义 1.1 v-bind 指令被用来响应地更新 HTML 属性,其实它是支持一个单一 JavaScript 表达式 (v-for 除外). 2. 语法 2.1 完整语法:<span v- ...
- baidu.com跳转www.baidu.com
打开git bash,输入 curl baidu.com,收到返回 <html> <meta http-equiv="refresh" content=" ...
- Spring中事务配置以及事务不起作用可能出现的问题
前言:在Spring中可以通过对方法进行事务的配置,而不是像原来通过手动写代码的方式实现事务的操作,这在很大程度上减少了开发的难度,本文介绍Spring事务配置的两种方式:基于配置文件的方式和基于注解 ...
- C#事件の.net下的EventArgs和EventHandler
事件参数(EventArgs) .Net框架里边提供的一个委托EventHandler来Handle事件. 一样,搞一个场景(这个场景是书里的):买车.经销商(CarDealer)会上新车(NewCa ...
- UVA1442-Cav(扫描法)
Problem UVA1442-Cav Accept: 185 Submit: 679Time Limit: 3000 mSec Problem Description Input The inpu ...
- 洛谷P1127-词链
Problem 洛谷P1127-词链 Accept: 256 Submit: 1.3kTime Limit: 1000 mSec Memory Limit : 128MB Problem ...