(1)文章工作

The main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis.

本文的主要目标是设计一种合适而有效的船舶自动驾驶仪控制器,利用含波效应的水动力数值模型模拟了CyberShip II船舶自动驾驶系统。

(2)PD控制器

A conventional autopilot system used for controlling the ship motion is a PD controller with constant parameters values. These controllers can work properly in precisely defined operating conditions, but the quality of their work is worse when these conditions change. Ship dynamic characteristics can change as a consequence of changes of the ship speed, load, and external disturbances such as waves, wind, and/or sea currents. In many cases manual tuning of control parameters is necessary.

一种用于控制船舶运动的传统自动驾驶系统是一种参数值不变的PD控制器。这些控制器可以在精确定义的操作条件下正常工作,但当这些条件发生变化时,它们的工作质量会更差。船舶的动态特性可以随着船舶的速度、负载和诸如波浪、风和/或海流等外部干扰的变化而发生变化。在许多情况下,手动调整控制参数是必要的。

Therefore a lot of research activities have been oriented to improving the quality of operation of these controllers using adaptive mechanisms which automatically change ship model parameters, depending on operating conditions.

因此,大量的研究活动都是为了提高这些控制器的运行质量,使用自适应机制,根据操作条件自动改变船舶模型的参数。

The controller which, due to its simplicity, is most frequently used in autopilot systems is the PD controller. It controls the rudder blade deflection depending on the values of the heading error and the yaw rate. The PD controller is described by the following formula:

由于其简单性,在自动驾驶系统中最常用的控制器是PD控制器。它根据航向误差和偏航率的值来控制方向舵叶片的偏转。PD控制器的描述公式如下:

where KP and KD are controller settings, ψd and ψ are the desired and current ship headings, respectively, r = dψ/dt is the yaw rate of the ship, and δz is the commanded rudder blade deflection.

其中KP和KD为控制器设置,ψd和ψ为当前航向,r=dψ/dt为船舶偏航率,δz为指令舵叶片偏转。

(3)评价函数

The cost function took into account the ship course error and rudder blade deflection, and was used for evaluating the quality of the steering action of the controllers.

成本函数考虑了船舶航向误差和方向舵叶片偏转,并用于评估控制器的转向动作的质量。

(4)控制器参数

For the nonlinear part of the sliding mode controller (43), the following values were assumed: ηh = 10, φh = 0.3

对于滑模控制器(43)的非线性部分,假设了以下值:ηh=10,φh=0.3,

while for the PD controller (20), the assumed gains were KP = 2 and KD = 50

而对于PD控制器(20),假设的增益为 KP=2KD=50

The parameters in the reference model (44) were ωn = 0.1, ζ = 0.85.

参考模型(44)中的参数分别为ωn=0.1,ζ=0.85。

(5)结果对比



【文献阅读】Nonlinear controller design of a ship autopilot的更多相关文章

  1. 阅读DMA Controller Core 官方手册

    阅读DMA Controller Core 官方手册 DMA控制器框架图 怎样去设定一个DMA控制器 实例化DMA控制器 参数配置界面如下图所示: 对于width of the DMA length ...

  2. 文献阅读笔记——group sparsity and geometry constrained dictionary

    周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...

  3. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(6)

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(6) 1.创建工程与开启GUI 2.调试 查看关于 ...

  4. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(5)

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(5) 1.创建工程 启动vidado HLS co ...

  5. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(4)

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(4) 1.老样子,首先运行tcl脚本建工程: Vi ...

  6. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(3)

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(3) 优化lab1 1.创建工程,开启HLS 运行 ...

  7. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》(2)

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis>(2) 1.实验目的 2.启动命令行  将命令行切换 ...

  8. Vivado HLS初识---阅读《vivado design suite tutorial-high-level synthesis》

    Vivado HLS初识---阅读<vivado design suite tutorial-high-level synthesis> 1.启动 2.创建工程 3.添加源文件 4.添加测 ...

  9. 文献阅读 | The single-cell transcriptional landscape of mammalian organogenesis | 器官形成 | 单细胞转录组

    The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想 ...

  10. AutoML文献阅读

    逐步会更新阅读过的AutoML文献(其实是NAS),以及自己的一些思考 Progressive Neural Architecture Search,2018ECCV的文章: 目的是:Speed up ...

随机推荐

  1. Error in v-on handler: “TypeError: Cannot read properties of undefined (reading ‘resetFields‘)“

    在做vue element 项目中,做了一个新增 打开弹框的功能,想每次点击新增的时候表单项重置.1.使用了this.$refs[formName].resetFields();2.但是报错了,原因是 ...

  2. AirTest

    1.环境 直接安装AirTest IDE 就可以了 2.连接手机 打开开发者模式,允许Usb调试,手机在电脑界面显示出来即可 3.Airtest辅助窗 4.Poco辅助窗 新建一个air文件 在poc ...

  3. LeetCode-2049 统计最高分的结点数

    来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/count-nodes-with-the-highest-score 题目描述 给你一棵根节点为 ...

  4. [网鼎杯2020]boom

    [网鼎杯2020]boom 分析 感觉比较友善,主要考查数学运算. 解析 解压之后发现是个exe文件,运行得到一个md5 查询: 输入明文得到: 下个挑战是解三元一次方程: 拿matlab算一下. s ...

  5. CF1137F Matches Are Not a Child's Play 题解

    以最后被删去的点为根,这样子不会存在从父亲然后删掉某个点,儿子的删除顺序一定比父亲前. 记每个点子树中的最大值为 \(f_x\),那么一个点的排名,首先就需要加上 \(<f_x\) 的所有值,记 ...

  6. Centos7 MyCat2 安装部署

    部署MyCat2 之前需要搭建好数据库的主从,详看文档:mysql 主次数据库搭建 官网:http://www.mycat.org.cn/ 官方文档: https://www.yuque.com/cc ...

  7. java 将yyyyMMddHHmmss转化为yyyy-MM-dd HH:mm:ss格式的字符串

    思路很简单:先转化为yyyyMMddHHmmss格式的Date类型,再格式化为yyyy-MM-dd HH:mm:ss格式的字符串类型 import java.text.DateFormat; impo ...

  8. jmeterGUI&非GUI模式之如何减负性能调优

    jmeter之如何减负-实现稳定超高并发测试(性能调优)在测试过程中,初学者使用工具不当,添加众多监控组件,非常想看到实时报告,跑不了一会,jmeter就卡死甚至内存耗尽,只得重启,之前的统计报告没了 ...

  9. 创建maven项目时,IntelliJ IDEA2019出现:Unable to import maven project: See logs for details 报错

    开发环境:IntelliJ IDEA 2019.1.3 + Maven3.6.3 报错截图 主要原因 IntelliJ IDEA 2019.1.3 与 Maven3.6.3 不兼容问题 解决方案 将m ...

  10. 菜狗记录pycharm使用问题

    1.