题意

有一个序列 \(A=\{a_1, a_2, ..., a_n\}\),按如下方式构造一个 \((n + 1) \times (n + 1)\) 的矩阵 \(B\):

  • \(B_{i0}=0\)(\(0\le i\le n\));
  • \(B_{0i} = a_i\)(\(1 \le i \le n\));
  • \(B_{ij} = B_{(i - 1)j} \text{ xor } B_{i(j - 1)}\)(\(1 \le i, j \le n\))。

现在给出 \(B_{1n}, B_{2n}, ..., B_{nn}\)(也就是最后一,但是没有 \(B_{0n}\)),求出 \(A\)。

\(n \le 5 \times 10^5\)

解析

题目给出的是 \(B\) 的递推式,我们希望得到计算式,换句话说,我们希望直接得到 \(B_{in}\) 只与 \(A\) 有关的表达式。

倒过来想,考虑 \(a_i\) 对 \(B_{jn}\) 的贡献。由于是异或,\(a_i\) 只可能贡献 \(a_i\) 或 \(0\)。

那具体贡献多少?我们可以把问题具象化,\(B\) 的递推式相当于是“向左走一步或向上走一步”。那么只需要判断从 \(B_{jn}\) 走到 \(B_{0i}\) 的方案数是奇数还是偶数。这里有一个小细节——“走到 \(B_{0i}\) 就结束了,不能继续走到 \(B_{0(i-1)}\)”,这个细节相当于说最后一步一定是向上的

这样我们就可以通过组合数算出 \(B_{jn}\) 到 \(B_{0i}\) 的方案数:

\[\binom{(n - i) + (j - 1)}{j - 1}
\]

这样并不好看,我们设 \(a'_i = a_{n - i}\),\(b_i = B_{i + 1, n}\)。那么 \(a_i'\) 对 \(b_j\) 的贡献只需要看 \(\binom{i + j}{j}\) 的奇偶性。关于组合数的奇偶性,结论如下:

\(\binom ab\) 为奇数当且仅当 \(a\text{ and }b = b\)。

也就是说 \(a_i'\) 对 \(b_j\) 有贡献当且仅当 \((i + j)\text{ and }j=j\) 等价于 \(i\text{ and }j = 0\)。

\[b_j = \bigotimes_{i\text{ and }j = 0}a_i'
\]

似乎有一个做法,如果把 \(j\) 取个补集,那条件不就是 \(i\in j\)(\(i\text{ and }j = i\)),那么

\[b'_j = \bigotimes_{i \in j}a_i'
\]

这 \(b'\) 不就是 \(a'\) 做了或卷积 FWT 的结果吗?然而,由于 \(n\) 未必是 \(2\) 的整次方,\(b'_0, b'_1, ..., b_{n - 1}'\) 中有几项我们不知道。这个方法就这么废了……

我们再考虑一下 \(i\text{ and }j\) 能怎么处理——容斥?我们钦定 \(i\) 对应的二进制位全为 \(1\),即 \(i\text{ and }j = i\),记为 \(c_i\):

\[c_i = \bigotimes_{i \in j}a_j'
\]

则由容斥可得下式(容斥的正负系数在异或中没有意义)

\[b_i = \bigotimes_{j \in i}c_j
\]

唔,看起来好像没什么区别,还更麻烦了?先分析一下,由于 \(c_i\) 是计算 \(i\) 的超集的异或和,那么当 \(i \ge n\) 时,\(c_i = 0\)。于是我们只需要计算 \(c_0, c_1, ..., c_{n - 1}\),那么我们可以通过 \(b\) 计算出这些结果吗?

当然是可以的——因为这是或卷积的 fwt,计算 \(b_i\) 只需要用到 \(j \le i\) 的 \(c_j\),那么就可以通过 \(b_{0~(n-1)}\) 做一遍或卷积 fmt 求出 \(c_{0~(n-1)}\)。

最后再用完整的 \(c\) 做一遍与卷积 fmt 求得 \(a'\)。

源代码

#include <cstdio>
#include <cstring>
#include <algorithm>
const int MAXN = (int)5e5 + 10;
int len, lg2_len;
int arr[MAXN];
void fwtOr()
{
    for (int i = 0; i <= lg2_len; ++i)
    {
        for (int j = 0; j < len; ++j)
        {
            if (j & (1 << i))
            {
                arr[j] ^= arr[j ^ (1 << i)];
            }
        }
    }
}
void fwtAnd()
{
    for (int i = 0; i <= lg2_len; ++i)
    {
        for (int j = 0; j < len; ++j)
        {
            if (j & (1 << i))
            {
                arr[j ^ (1 << i)] ^= arr[j];
            }
        }
    }
}
int main()
{
    scanf("%d", &len);
    for (int i = 0; i < len; ++i)
    {
        scanf("%d", &arr[i]);
    }
    while ((1 << lg2_len) < len)
    {
        ++lg2_len;
    }
   
    fwtOr();
    fwtAnd();
    for (int i = 1; i < len; ++i)
    {
        printf("%d ", arr[len - i]);
    }
    printf("%d\n", arr[0]);
    return 0;
}

「postOI」Lost Array的更多相关文章

  1. 「CF86D」Powerful array 解题报告

    题面 给出一个\(n\)个数组成的数列\(a\),有\(t\)次询问,每次询问为一个\([l,r]\)的区间,求区间内每种数字出现次数的平方×数字的值 的和 思路: 直接上莫队咯 然后就T了 没学过莫 ...

  2. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  3. 【微信小程序】开发实战 之 「配置项」与「逻辑层」

    微信小程序作为微信生态重要的一环,在实际生活.工作.商业中的应用越来越广泛.想学习微信小程序开发的朋友也越来越多,本文将在小程序框架的基础上就微信小程序项目开发所必需的基础知识及语法特点进行了详细总结 ...

  4. 后盾网lavarel视频项目---Laravel 安装代码智能提示扩展「laravel-ide-helper」

    后盾网lavarel视频项目---Laravel 安装代码智能提示扩展「laravel-ide-helper」 一.总结 一句话总结: laravel-ide-helper作用是:代码提示 larav ...

  5. 「译」forEach循环中你不知道的3件事

    前言 本文925字,阅读大约需要7分钟. 总括: forEach循环中你不知道的3件事. 原文地址:3 things you didn't know about the forEach loop in ...

  6. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  7. 【入门必看】不理解「对象」?很可能有致命bug:简单的Python例子告诉你

    简介:越来越多的人要在学习工作中用到『编程』这个工具了,其中很大一部分人用的是Python.大部分人只是做做简单的科研计算.绘图.办公自动化或者爬虫,但-- 这就不需要理解「指针与面向对象」了吗? 在 ...

  8. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  9. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  10. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

随机推荐

  1. JSP第十一次作业

    1.第十二周上机作业(邮件功能)的控制层代码改用为servlet实现.2.学习通发布了考试,截止到本周六.  com.gd.dao  BaseDao 1 package com.gd.dao; 2 3 ...

  2. Vue3 企业级优雅实战 - 组件库框架 - 10 实现组件库 cli - 下

    上文创建了一堆 utils.component-info,并实现了新组件模块相关目录和文件的创建.本文继续实现后面的内容. 1 组件样式文件并导入 在 src/service 目录中创建 init-s ...

  3. 实现一个简单的在浏览器运行Dotnet编辑器

    之前已经实现过Blazor在线编译了,现在我们 实现一个简单的在浏览器运行的编辑器,并且让他可以编译我们的C#代码, 技术栈: Roslyn 用于编译c#代码 [monaco](microsoft/m ...

  4. 【TS】函数和函数类型

    在使用函数的时候,通常会给函数传值,或者给函数一个返回值调用,这个时候就会涉及到函数类型. 函数类型分为两个方面: 1.函数参数 2.函数返回值 语法: function 函数名( 参数 : 参数类型 ...

  5. 上篇 | 使用 🤗 Transformers 进行概率时间序列预测

    介绍 时间序列预测是一个重要的科学和商业问题,因此最近通过使用基于深度学习 而不是经典方法的模型也涌现出诸多创新.ARIMA 等经典方法与新颖的深度学习方法之间的一个重要区别如下. 概率预测 通常,经 ...

  6. nvm作用、下载、使用、常见问题

    一.nvm是什么及作用 nvm全名node.js version management,同等于nodejs的版本管理工具.当不同项目使用不同版本nodejs且不统一时,这时就用到nvm进行不同项目不同 ...

  7. 基于Python的OpenGL 05 之坐标系统

    1. 引言 本文基于Python语言,描述OpenGL的坐标系统 前置知识可参考: 基于Python的OpenGL 04 之变换 - 当时明月在曾照彩云归 - 博客园 (cnblogs.com) 笔者 ...

  8. angular 基本操作

    1.新建项目(带路由) ng new demo --routing 2.新建组件 统一放到components目录下(文件夹会自动创建) ng g component components/home ...

  9. 09 安装虚拟机:Ubuntu Server 20.04

    09 安装虚拟机:Ubuntu Server 20.04 9.1 取得安装映像档 9.2 建立虚拟机客体 请至Proxmox VE管理界面点选右上方的[建立VM],来到建立虚拟机客体的引导程序.引导程 ...

  10. JavaWeb中的Servlet

    Servlet 目录 Servlet 一.互联网中的资源 二.Servlet 2.1.Servlet的作用 2.2.Servlet执行流程 2.3.Servlet生命周期 2.4.Servlet的继承 ...