CLIP 读书笔记
论文:Learning Transferable Visual Models From Natural Language Supervision
CLIP: Contrastive Language-Image Pre-training
文中27个数据集简介:
数据集 | 简要描述 | 数据集类型 |
---|---|---|
StanfordCars | 196类小汽车, 16185张图片 | 细粒度分类 |
Country211 | 211个国家的带有GPS信息的图片,以评估视觉预测地理定位能力 | ? |
Food101 | 101种食物,101k张图片 | 细粒度分类 |
Kinetics700 | 700种人类动作,每个动作700个视频片段 | 细粒度分类 |
SST2 | 文本情感分析数据集 | ? |
SUN397 | 场景理解数据集,899个场景130k张图片 | 粗分类 |
UCF101 | 101种人类行为动作数据集 | 细粒度分类 |
HatefulMemes | 可引起仇恨多模态图文对数据集 | ? |
CIFAR10 | 10种类别数据集 | 粗分类 |
CIFAR100 | 100中类别数据集 | 粗分类 |
STL10 | 类似cifar数据集,每个类别有大量无标注图片 | 粗分类 |
FER2013 | 7分类表情数据集 | 细粒度分类 |
Caltech101 | 101种类别数据集 | 粗分类 |
ImageNet | 1000种类别数据集 | 粗分类 |
OxfordPets | 猫狗数据集 | 细粒度 |
PascalVOC2007 | 物体检测数据集 | 粗分类 |
Birdsnap | 500种鸟类数据集49k张图片 | 细粒度 |
MNIST | 10个数字分类 | 粗分类 |
FGVCAircraft | 102种飞机数据集,每一类100张图片 | 细粒度 |
RESISC45 | 45种遥感场景图片数据集 | 粗分类 |
Flower102 | 102种花朵数据集,每种40-258张 | 细粒度 |
DTD | 纹理数据集 | 粗分类 |
CLEVRCounts | 合成的视觉问答数据集 | 粗分类 |
GTSRB | 德国交通信号灯分类数据集 | 粗分类 |
PatchCamelyon | 淋巴切片组织病理学扫描 | 粗分类 |
KITTI Distance | 移动机器人和自动驾驶距离预测 | 回归 |
EuroSAT | 遥感卫星图片10种类别 | 粗分类 |
论文针对27个数据集,关于零样本CLIP与全监督ResNet50基准模型进行对比。参考下图
(1)在细粒度分类数据集上,在有的数据集如StandfordCars和Food101上明显由于基准ResNet50 20个百分点;而在有些数据集上如Flowers102和FGVCAircraft上则明显低于基准10个百分点。论文猜测是由于不同监督任务的数据量有很大区别,但是结合上面粗略统计这4个细粒度数据集,类别的数量和每个类别下图片的数量都没有太大区别。
(2)Kinetic700和UCF101是人类动作分类数据集,零样本学习CLIP方法比基准方法高 10百分点上下。论文解释自然语言为涉及动词的视觉概念提供了更广泛的监督,而单纯的视觉监督任务主要以名称为主。
(3)零样本学习CLIP方法在更专业的复杂的抽象的任务上如遥感图像分类如EuroSAT和RESISC45,淋巴结肿瘤检测如PatchCamelyon,合成场景物体计数CLEVRCounts,自动驾驶相关的交通信号识别GTSRB,最近汽车距离识别KITTI Distance这些任务上,该方法表现比基准方法差很多。但是非专业人员在如卫星图片分类、计数、交通信号灯识别变现很稳健,说明零样本学习CLIP方法还有很大的改进空间。但是对于一些专业性很强的任务中,如淋巴结肿瘤辨别,即使是非专业人员也很难识别。零样本学习方法相比小样本学习方式,哪个更合适还有待进一步讨论。
Fig. 1
Zero-CLIP方法与few-shot方法对比
直觉认为Zero-shot方法会比few-shot方法性能差,实际表现是Zero-CLIP方法相当于基于相同特征空间 4-shot 线性分类方法。之所以如此,是由于这两种方法的区别。基于CLIP 的Zero-shot分类器,具备自然语言和视觉区分能力,还学习到了语言域和视觉域之间的关联。而常规的监督学习方法,并不能直接从训练样本中学习到概念(分类任务都会把类别标签都转换为0,1,2,……这些数字),另外图片中,经常包含多个不同视觉主体,而标签仅仅给出的其中的一个。
Linear probe CLIP:指基于CLIP特征,进行分类器单独训练。基于上述分析,Linear Probe CLIP 在开始1-shot,2-shot时还不如 Zero-Shot CLIP,单独训练分类器反而更差了。当每个类别变多时,效果才逐渐超过Zero-shot CLIP方法。在20个数据集上验证了,Zero-CLIP方法相当于基于相同特征空间 4-shot 线性分类方法。而基于其它Backbone提取的特征进行16-shot 分类,都不如Zero-Shot CLIP 方法。而16-shot CLIP 比16-shot 其它backbone方法高出10个百分点。
Fig. 2
Fig1是 Zero-CLIP方法与ResNet50监督方法进行对比,而Fig3是Zero-CLIP方法与基于CLIP特征空间的few-shot性能对比,这个对比是要求few-shot达到Zero-CLIP方法一样性能下数据集每个类别所需要的最少数量。Fig2表明基于CLIP特征的few-shot 并未都超过了Zero-CLIP,只有few-shot的每个类别数量超过一定数量如4-shot,才超过Zero-CLIP。
从Fig.3看出,达到Zero-CLIP的性能,在不同数据集上,基于CLIP特征训练分类器,不同数据集每个类别样本数量是不相同,从不到1个到最大的要求184个。
CLIP 读书笔记的更多相关文章
- 《android开发艺术探索》读书笔记(六)--Drawable
接上篇<android开发艺术探索>读书笔记(五)--RemoteViews [BitmapDrawable] 简单的图片 <!xml version="1.0" ...
- 6 Specialzed layers 特殊层 第一部分 读书笔记
6 Specialzed layers 特殊层 第一部分 读书笔记 Specialization is a feature of every complex organization. 专注是 ...
- 4 Visual Effects 视觉效果 读书笔记 第四章
4 Visual Effects 视觉效果 读书笔记 第四章 Well, circles and ovals are good, but how about drawing r ...
- 读书笔记 - js高级程序设计 - 第十五章 使用Canvas绘图
读书笔记 - js高级程序设计 - 第十三章 事件 canvas 具备绘图能力的2D上下文 及文本API 很多浏览器对WebGL的3D上下文支持还不够好 有时候即使浏览器支持,操作系统如果缺缺 ...
- 读书笔记汇总 - SQL必知必会(第4版)
本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...
- 读书笔记--SQL必知必会18--视图
读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...
- 《C#本质论》读书笔记(18)多线程处理
.NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...
- C#温故知新:《C#图解教程》读书笔记系列
一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...
- C#刨根究底:《你必须知道的.NET》读书笔记系列
一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...
- Web高级征程:《大型网站技术架构》读书笔记系列
一.此书到底何方神圣? <大型网站技术架构:核心原理与案例分析>通过梳理大型网站技术发展历程,剖析大型网站技术架构模式,深入讲述大型互联网架构设计的核心原理,并通过一组典型网站技术架构设计 ...
随机推荐
- [python] 基于blind-watermark库添加图片盲水印
blind-watermark是一个能够给图片添加/解析基于频域的数字盲水印的Python库.图像水印image watermark是指在图片里添加文本或图形,以标记图片的来源.但是图像水印会破坏原图 ...
- [python] python-pinyin库
python-pinyin库是一个汉字拼音转换工具,其主要功能有: 根据词组智能匹配最正确的拼音. 支持多音字. 简单的繁体支持, 注音支持. 支持多种不同拼音风格. 安装命令为:pip instal ...
- 【MySQL】MySQL8安装
1. MySQL8安装 安装环境 操作系统:CentOS7 MySQL版本:8.0.28 安装方式:二进制Generic 软件路径:/app/database 数据路径:/data/3306 日志路径 ...
- 使用英特尔 Sapphire Rapids 加速 PyTorch Transformers 模型
大约一年以前,我们 展示 了如何在第三代 英特尔至强可扩展 CPU (即 Ice Lake) 集群上分布式训练 Hugging Face transformers 模型.最近,英特尔发布了代号为 Sa ...
- ant design pro 配置路由 显示页面步骤详解
第一步 在 src/views 下新建页面的vue文件,如果相关页面有多个,可以新建一个文件夹来放置相关文件. 给页面里写几个字,等会可以看到哦~~ 第二步 将文件加入菜单和路由 进入这个文件 ...
- 流思想概述-两种获取Stream流的方式
流思想概述 注意:请暂时忘记对传统IO流的固有印象 ! 整体来看,流式思想类似与工厂车间的 '生产流水线'. 当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个 ...
- 【学习笔记】QT从入门到实战完整版(按钮和信号槽)(1)
介绍说明 学习 QT 的目的只是为了可以实现跨平台的具有GUI 的程序,以前用的 MFC,但是无法应用在嵌入式平台.后来在全志的 Tina 系统中有看到 QT ,因此特地去了解了QT,挺有意思的,UI ...
- spring.jackson.default-property-inclusion 不生效问题分析
背景 项目里每个返回体里都有@JsonInclude(JsonInclude.Include.NON_NULL) 这个注解,也就是不返回null字段 想有没有办法全局配置一下,这样就不用每个类都加这个 ...
- 如何在 C# 项目中链接一个文件夹下的所有文件
在 C# 项目中通过链接方式引入文件可以让我们在项目中使用这些文件中的代码.常见的比如链接 AssemblyInfo.cs 文件,这样我们就可以在项目中使用这个文件中的版本号等信息.但是如果我们想要链 ...
- chatGPT 桌面版安装教程
概述 标题党了,首先声明 ChatGPT 官方没有桌面版,目前市面上很多的桌面应用也在是浏览器上包了一层,而且大多做的比较粗糙,不太好用,所以都不太推荐. 作为一名骨灰级的程序员,ChatGPT 的重 ...