Description

Mr. Mindless has many balls and many boxes,he wants to put all the balls into some of the boxes.Now, he wants to know how many different solutions he can have.
you know,he could put all the balls in one box,and there could be no balls in some of the boxes.Now,he tells you the number of balls and the numbers of boxes, can you to tell him the number of different solutions? Because the number is so large, you can just tell him the solutions mod by a given number C.
Both of boxes and balls are all different.

Input

There are multiple testcases. In each test case, there is one line cantains three integers:the number of boxes ,the number of balls,and the given number C separated by a single space.All the numbers in the input are bigger than 0 and less than 2^63.

Output

For each testcase,output an integer,denotes the number you will tell Mr. Mindless

Sample Input

3 2 4
4 3 5

Sample Output

1
4

Hint

简单题,快速幂
/***************************************************/
数据更新了就wa了!!!

#include<stdio.h>
typedef long long ll;
ll quickmod(ll a, ll b, ll m)
{
ll ans = 1;
while (b)
{
if (b & 1)
{
ans = (ans%m*a) % m;
b--;
}
b >>= 1;
a = a%m*a%m;
}
return ans%m;
}
int main()
{
ll m, n, c;
while (~scanf("%lld%lld%lld", &n, &m, &c))
{
printf("%lld\n", quickmod(n, m, c));
}
return 0;
}
/**********************************************************************
Problem: 1162
User: leo6033
Language: C++
Result: WA
**********************************************************************/
改成了unsigned long long以后直接快速幂  wa!!!
然后看了别人的博客之后 用二分法实现乘法  这数据是要有多大!QAQ

#include<stdio.h>
typedef unsigned long long ll;
ll mod_(ll a, ll b, ll m)
{
if (b == 0)
return 0;
ll r = mod_(a, b / 2, m);
r = (r + r) % m;
if (b % 2)
r = (r + a) % m;
return r;
}
ll mod(ll a, ll b, ll c)
{
if (b == 0)return 1;
ll r = mod(a, b / 2, c);
r = mod_(r, r, c);
if (b % 2)
r = mod_(r, a, c);
return r;
}
int main()
{
ll m, n, c;
while (~scanf("%lld%lld%lld", &n, &m, &c))
{
printf("%lld\n", mod(n, m, c));
}
return 0;
} /**********************************************************************
Problem: 1162
User: leo6033
Language: C++
Result: AC
Time:28 ms
Memory:1120 kb
**********************************************************************/


CSUOJ 1162 Balls in the Boxes 快速幂的更多相关文章

  1. Open judge C16H:Magical Balls 快速幂+逆元

    C16H:Magical Balls 总时间限制:  1000ms 内存限制:  262144kB 描述 Wenwen has a magical ball. When put on an infin ...

  2. Balls in the Boxes

    Description Mr. Mindless has many balls and many boxes,he wants to put all the balls into some of th ...

  3. A - Alice and the List of Presents (排列组合+快速幂取模)

    https://codeforces.com/contest/1236/problem/B Alice got many presents these days. So she decided to ...

  4. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  5. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  6. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  7. Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...

  8. GDUFE-OJ 1203x的y次方的最后三位数 快速幂

    嘿嘿今天学了快速幂也~~ Problem Description: 求x的y次方的最后三位数 . Input: 一个两位数x和一个两位数y. Output: 输出x的y次方的后三位数. Sample ...

  9. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

随机推荐

  1. Mycat从入门到放弃

    https://blog.csdn.net/u013235478/article/details/53178657

  2. Linux基础-awk使用

    打印uid在30~40范围内的用户名:awk -F: '$3>=30&&$3<040{print $1}' passwd 打印第5-10行的行号和用户名:awk -F: ' ...

  3. 配置多个ssh-key

    搞了三天没搞出来,还在男朋友面前哭了一场,真心觉得我只该吃屎,我好没用.哎.. 首先在上一篇记录了如何生成ssh-key,并使本地可以通过ssh的方式克隆和推送项目.但如果你有个github账号,有个 ...

  4. Qt多线程编程中的对象线程与函数执行线程

    近来用Qt编写一段多线程的TcpSocket通信程序,被其中Qt中报的几个warning搞晕了,一会儿是说“Cannot create children for a parent that is in ...

  5. CCN与CDN区别

    CCN与CDN区别 相同点: 1.针对目前互联网上存在问题,提出解决方案,让数据传输更快更稳定. 2.都均衡网络流量. 区别: 1.CDN是内容分发网络,是基于目前的TCP/IP体系结构的补充方法.C ...

  6. 1 - django-介绍-MTV-命令-基础配置-admin

    目录 1 什么是web框架 2 WSGI 3 MVC与MTV模式 3.1 MVC框架 3.2 MTV框架 3.3 区别 4 django介绍 4.1 Django处理顺序 4.2 创建django站点 ...

  7. Python string interning原理

    原文链接:The internals of Python string interning 由于本人能力有限,如有翻译出错的,望指明. 这篇文章是讲Python string interning是如何 ...

  8. aarch64_g5

    gtkmm24-devel-2.24.5-2.fc26.aarch64.rpm 2017-02-11 18:17 620K fedora Mirroring Project gtkmm24-docs- ...

  9. ajax代码示例

    function loadXMLDoc(idName,url,sendOut) { var xmlhttp; if (window.XMLHttpRequest) {// code for IE7+, ...

  10. wordcount在本地运行报错解决:Exception in thread "main" java.lang.UnsatisfiedLinkError:org.apache.hadoop.io.native.NativeID$Windows.access

    在windows中的intellij中运行wordcount程序,控制台输出以下报错 在Intellij编辑器中解决办法:本地重新创建NativeIO类,修改一个方法返回值,然后用新建的NativeI ...