题目链接

CF662C

题解

行比较少,容易想到将每一列的状态压缩

在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一

所以我们只需求出每一种操作的答案

如果操作的行的集合为\(S\),那么对于状态为\(e\)的列,将会变成\(e \; xor \; S\),同时产生\(e \; xor \; S\)的答案

如果\(s\)的答案记为\(b[s]\),状态为\(s\)的列数量为\(a[s]\)

那么对于操作\(S\),最后的答案为

\[\sum\limits_{i \; xor \; j = S}a[i] \centerdot b[j]
\]

而\(b[s]\)和\(a[s]\)数组都可以预处理出来

记\(N = 2^{20}\)

复杂度为\(O(NlogN)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2100005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
char S[22][100005];
int n,m;
LL A[maxn],B[maxn];
void fwt(LL* a,int n,int f){
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += (i << 1))
for (int k = 0; k < i; k++){
LL x = a[j + k],y = a[j + k + i];
a[j + k] = x + y,a[j + k + i] = x - y;
if (f == -1) a[j + k] /= 2,a[j + k + i] /= 2;
}
}
int main(){
n = read(); m = read();
REP(i,n) scanf("%s",S[i] + 1);
REP(j,m){
int s = 0;
REP(i,n) s = s << 1 | (S[i][j] - '0');
A[s]++;
}
int maxv = (1 << n) - 1;
for (int s = 0; s <= maxv; s++){
int cnt = 0;
for (int i = s; i; i >>= 1) cnt += (i & 1);
B[s] = min(cnt,n - cnt);
}
int deg = 1;
while (deg <= maxv) deg <<= 1;
fwt(A,deg,1); fwt(B,deg,1);
for (int i = 0; i < deg; i++) A[i] = A[i] * B[i];
fwt(A,deg,-1);
LL ans = INF;
for (int i = 0; i <= maxv; i++) ans = min(ans,A[i]);
printf("%lld\n",ans);
return 0;
}

CF662C Binary Table 【状压 + FWT】的更多相关文章

  1. [CF662C Binary Table][状压+FWT]

    CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...

  2. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  3. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  4. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

  5. CF662C Binary Table (快速沃尔什变换FWT)

    题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...

  6. CF662C Binary Table 枚举 FWT

    题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...

  7. CF662C Binary Table (FWT板题)

    复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=i​f[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...

  8. [CF662C] Binary Table(FWT)

    题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:

  9. [CF662C]Binary Table

    luogu 题意 你有一个\(n*m\)的\(01\)矩阵.你可以把任意一行或者一列的\(01\)取反.求矩阵中最少的\(1\)的数量. \(n\le20,m\le10^5\) sol 很自然地有一个 ...

随机推荐

  1. <数据结构系列1>封装自己的数组——手写动态泛型数组(简化版ArrayList)

    哈哈,距离上一次写博客已经快过去半个月了,这这这,好像有点慢啊,话不多说,开始我们的手写动态泛型数组 首先是我们自己写一个自己的动态数组类,代码如下所示: public class Array< ...

  2. ios手机处理keyup事件时的兼容性问题

    在安卓手机中没有任何问题,但在ios手机中出现当输入法中输入内容时,事件keyup没有效果 解决办法: //keyup的兼容性处理 var bind_name = 'input'; if (navig ...

  3. VM虚拟机系统时间同步网络时间并登录用户自动校正时间

    原文出处: http://blog.51cto.com/wutou/1932317 VM虚拟机大家都用,我在用完后,经常使用"挂起客户机",但是这样一来,系统恢复启动很快,但是少了 ...

  4. 为什么 jmeter 分布式测试,一定要设置 java.rmi.server.hostname

    之前总结了 jmeter 分布式测试的过程,在部署过程中提到,要在 system.properties 中配置自己的 IP. 至于为什么要这么做,源于这一次 debug 的过程. 运行环境 mint, ...

  5. Hyperledger Fabric 1.0 从零开始(一)

    在HyperLedger/Fabric发布0.6的时候,公司就已经安排了一个团队研究这一块,后来也请IBM的专家组过来培训了一批人,不幸的是,这批人后来全走了,然后1.0就发布了.自从2017年7月H ...

  6. MyEclipse 和 eclipse 最简单的安装Jetty容器插件

    一.MyEclipse安装jetty 1.下载jetty插件  http://pan.baidu.com/s/1nuMYGNv 2.将下载后的jetty插件放到安装MyEclipse目录的MyEcli ...

  7. [mysql] 归档工具pt-archiver,binlog格式由mixed变成row

    pt-archiver官方地址:https://www.percona.com/doc/percona-toolkit/3.0/pt-archiver.html 介绍:归档数据,比如将一年前的数据备份 ...

  8. vim搭建C编程IDE

    曾经在一篇关于vim技巧的文章里有一句话:"世界上只有三种编辑器,EMACS.VIM和其它." 我不知道这是不是太过于绝对了,但是从我所看到的每一篇linux下编程以及文字编辑的文 ...

  9. Web应用程序的基本安全实践

    创建安全Web应用程序的主题非常广泛.它需要研究以了解安全漏洞.您还需要熟悉Windows..NET框架和ASP.NET的安全设施.最后,有必要了解如何使用这些安全特性来对付威胁. 即使您没有安全方面 ...

  10. DPDK helloworld 源码阅读

    在 DPDK Programmer's Guides 中的 EAL 一篇中有一个图可以很清晰地看到一个DPDK的应用程序的大致执行思路: 初始化检查CPU支持.微架构配置等完成后,执行main()函数 ...