题面链接

洛谷

题意简述

求\(\prod_{i=A}^B\prod_{j=1}^i \lgroup \frac{i}{j} \rgroup ^{\lfloor \frac{i}{j} \rfloor}\)

sol

我的做法是观察法,首先我们把\(i\)和\(j^{-1}\)分开做,可以看到

\(i\)的是这样的。表格内是每个\(i\)和\(j\)的对应\(i\)的贡献

\(1^1\)
\(2^2\) \(2^1\)
\(3^3\) \(3^1\) \(3^1\)
\(4^4\) \(4^2\) \(4^1\) \(4^1\)
\(5^5\) \(5^2\) \(5^1\) \(5^1\) \(5^1\)
\(6^6\) \(6^3\) \(6^2\) \(6^1\) \(6^1\) \(6^1\)

可以发现第\(i\)行我们只要快速求出指数就可以快速幂了。然后会发现一个神奇的性质,第\(i\)列每过\(i\)就会让指数加\(1\)。这样的话我们给\(i,2i,3i,4i,5i...\)加1,然后前缀和就行了。

要不还是再说清楚点吧。下面这个表是要加的指数。

1
1 1
1 0 1
1 1 0 1
1 0 0 0 1
1 1 1 0 0 1
1 0 0 0 0 0 1
1 1 0 1 0 0 0 1

然后对每列做一遍前缀和。

1
2 1
3 1 1
4 2 1 1
5 2 1 1 1
6 3 2 1 1 1
7 3 2 1 1 1 1
8 4 2 2 1 1 1 1

然后就变回去了,这也许是差分的思想???具体实现不需要对每列开数组,丢到一起就OK了。

下面的1,2,3,4,5,6均指 他们的逆元

\(1^1\)
\(1^2\) \(2^1\)
\(1^3\) \(2^1\) \(3^1\)
\(1^4\) \(2^2\) \(3^1\) \(4^1\)
\(1^5\) \(2^2\) \(3^1\) \(4^1\) \(5^1\)
\(1^6\) \(2^3\) \(3^2\) \(4^1\) \(5^1\) \(6^1\)

这是\(j^{-1}\)的贡献。

然后和上面一样搞,但我们直接把这个数乘上去而不是加指数。

相信泥萌都懂了。那么我就贴个代码。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define gt getchar()
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
inline int in()
{
int k=0;char ch=gt;
while(ch<'-')ch=gt;
while(ch>'-')k=k*10+ch-'0',ch=gt;
return k;
}
const int YL=19260817,N=2e6+5,M=1e6;
inline int ksm(int a,int k){int r=1;while(k){if(k&1)r=1ll*r*a%YL;a=1ll*a*a%YL,k>>=1;}return r;}
inline int MO(const int &a){return a>=YL?a-YL:a;}
int sum[N],sum_i[N],inv[N];
int main()
{
sum_i[0]=1;
for(int i=1;i<=M;++i)inv[i]=ksm(i,YL-2);
for(int i=1;i<=M;++i)
for(int j=i;j<=M;j+=i)++sum[j];
for(int i=1;i<=M;++i)sum[i]=(sum[i]+sum[i-1])%(YL-1);
for(int i=1;i<=M;++i)sum_i[i]=1ll*ksm(i,sum[i])*sum_i[i-1]%YL;
for(int i=1;i<=M;++i)sum[i]=1;
for(int i=1;i<=M;++i)
for(int j=i;j<=M;j+=i)sum[j]=1ll*sum[j]*inv[i]%YL;
for(int i=2;i<=M;++i)sum[i]=1ll*sum[i]*sum[i-1]%YL;
for(int i=2;i<=M;++i)sum[i]=1ll*sum[i]*sum[i-1]%YL;
for(int i=1;i<=M;++i)sum[i]=1ll*sum[i]*sum_i[i]%YL;
sum[0]=1;
int t=in();
while(t--)
{
int a=in(),b=in();
printf("%lld\n",1ll*sum[b]*ksm(sum[a-1],YL-2)%YL);
}
return 0;
}

洛谷P4902乘积的更多相关文章

  1. 洛谷 P4902 乘积 (约数筛,前缀和(积))

    洛谷P4902乘积 题意简述: 给 $ t $ 组 $ (a,b) $ 求: $ \prod_{i=A}^{B}\prod_{j=1}^{i}(\frac{i}{j})^{\lfloor \frac{ ...

  2. [洛谷P1887]乘积最大3

    题目大意:请你找出$m$个和为$n$的正整数,他们的乘积要尽可能的大.输出字典序最小的方案 题解:对于一些数,若它们的和相同,那么越接近它们的乘积越大. 卡点:无 C++ Code: #include ...

  3. [NOIP2000] 提高组 洛谷P1018 乘积最大

    题目描述 今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得 ...

  4. 洛谷 P1018 乘积最大

    P1018 乘积最大 题目描述 今年是国际数学联盟确定的“ 20002000 ――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰 9090 周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学 ...

  5. 洛谷—— P1018 乘积最大

    https://www.luogu.org/problem/show?pid=1018#sub 题目描述 今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年 ...

  6. 洛谷 P1018乘积最大

    题目描述 今年是国际数学联盟确定的“20002000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰9090周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友 ...

  7. java实现 洛谷 P1018 乘积最大

    import java.math.BigInteger; import java.util.Scanner; public class Main { private static Scanner ci ...

  8. 洛谷P1018乘积最大——区间DP

    题目:https://www.luogu.org/problemnew/show/P1018 区间DP+高精,注意初始化和转移的细节. 代码如下: #include<iostream> # ...

  9. 纪中23日c组T2 2159. 【2017.7.11普及】max 洛谷P1249 最大乘积

    纪中2159. max 洛谷P1249 最大乘积 说明:这两题基本完全相同,故放在一起写题解 纪中2159. max (File IO): input:max.in output:max.out 时间 ...

随机推荐

  1. 《杜增强讲Unity之Tanks坦克大战》8-子弹碰撞处理

    8 子弹碰撞处理 为了处理子弹打到坦克的伤害我们在这里新建一个Shell.cs 子弹有两种情况,碰到坦克炸开,没有碰到坦克则过2s子弹销毁. void Start () { Destroy (game ...

  2. gitlab+jenkins持续集成(二)

    1.jenkins服务器上的配置 -bin.tar.gz -C /opt/ yum install -y git /conf/settings.xml #只需更改maven的地址 <?xml v ...

  3. 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm

    一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...

  4. 【RL系列】马尔可夫决策过程中状态价值函数的一般形式

    请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫 ...

  5. 对 CasperJS 进行远程调试

    CasperJS运行在PhantomJS之上,其实也是启用PhantomJS的远程调试功能 PhantomJS 是一个无图形界面的浏览器,它支持各种Web标准:DOM处理,CSS选择器,JSON,Ca ...

  6. 通过NPM快速发布你的NodeJS模块(组件包)

    1.更新 NPM - [ npm install -g npm | 该步骤可选:最好使用新版本] 楼主当前版本号 2.6.1 ,如果更新报错,可以尝试 国内淘宝镜像 $ npm -v 2.6.1 // ...

  7. jQuery获取复选框选中的每一个值

    $('input[name="serviceMode"]:checked').each(function(){ this.attr('value') });

  8. ### Error building SqlSession.

    org.apache.ibatis.exceptions.PersistenceException: ### Error building SqlSession.### The error may e ...

  9. n以内的1的个数

    import java.util.Scanner; public class main { /** * @param args */ public static void main(String[] ...

  10. Task 4.4二维环形数组求最大子矩阵之和

    任务: (1)输入一个二维整形数组,数组里有正数也有负数. (2)二维数组首尾相接,象个一条首尾相接带子一样. (3)数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和. (4)求所有子数 ...