An easy problem

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2770    Accepted Submission(s): 1034

Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
 
Input
The first line is an integer T(1≤T≤10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

It's guaranteed that in type 2 operation, there won't be two same n.

 
Output
For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
 
Sample Input
1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
 
Sample Output
Case #1: 2 1 2 20 10 1 6 42 504 84

思路:

之前以为可以直接逆元,后面想起来逆元是要两个互质的数,后面想到了题目就是提示你用线段树,只要用建个线段树就好了。

假如第i次操作  ,x = 1;是第一种操作,那么只要根据修改第x个叶子结点将他修改为y。

x=2,只要将第y个叶子节点修改为1,

每一次操作都求出根节点的值就好了。

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid int m = (l + r) >> 1
const int M = 1e5+;
ll sum[M<<];
ll m;
void pushup(int rt){
sum[rt] = (sum[rt<<]*sum[rt<<|])%m;
} void update(int p,int c,int l,int r,int rt){
if(l == r){
sum[rt] = c;
return ;
}
mid;
if(p <= m) update(p,c,lson);
if(p > m) update(p,c,rson);
pushup(rt);
} void build(int l,int r,int rt){
if(l == r){
sum[rt] = ;
return ;
}
mid;
build(lson);
build(rson);
pushup(rt);
} ll query(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
return sum[rt];
}
mid;
ll ret = ;
if(L <= m) ret= (ret*query(L,R,lson))%m;
if(R > m) ret= (ret*query(L,R,rson))%m;
return ret;
}
int main()
{
ll t,n,x;
ll y;
ios::sync_with_stdio();
cin.tie();
cout.tie();
while(cin>>t){
int t1 = t;
while(t--){
ll ans = ;
cin>>n>>m;
build(,n,);
//cout<<2<<endl;
cout<<"Case #"<<t1-t<<":"<<endl;
for(int i = ;i <= n;i ++){
cin>>x>>y;
if(x==){
update(i,y,,n,);
cout<<query(,n,,n,)<<endl;
}
else{
update(y,,,n,);
cout<<query(,n,,n,)<<endl;
}
}
memset(sum,,sizeof(sum));
}
}
return ;
}

hdu 5475 (线段树)的更多相关文章

  1. hdu 5475 线段树

    An easy problem Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  3. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  5. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  7. hdu 4533 线段树(问题转化+)

    威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  8. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  10. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. 实现activity跳转动画的若干种方式

    第一种: (使用overridePendingTransition方法实现Activity跳转动画) 在Activity中代码如下 /** * 点击按钮实现跳转逻辑 */ button1.setOnC ...

  2. RabbitMQ入门:Hello RabbitMQ 代码实例

    在之前的一篇博客RabbitMQ入门:认识并安装RabbitMQ(以Windows系统为例)中,我们安装了RabbitMQ并且对其也有的初步的认识,今天就来写个入门小例子来加深概念理解并了解代码怎么实 ...

  3. VOT工具操作指南(踩过的坑)

    为了运行在VOT里DaSiamRPN,配置了很久环境,我电脑的配置是Ubuntu16.04+MatlabR2018a+pytorch0.3. 下面是一些从网上整理的操作步骤: 1.首先是工具箱的下载: ...

  4. Annotation 使用备忘

    title: Annotation 使用备忘 date: 2016-11-16 23:16:43 tags: [Annotation] categories: [Programming,Java] - ...

  5. 最小费用最大流模板(POJ 2135-Farm Tour)

    最近正好需要用到最小费用最大流,所以网上就找了这方面的代码,动手写了写,先在博客里存一下~ 代码的题目是POJ2135-Farm Tour 需要了解算法思想的,可以参考下面一篇文章,个人觉得有最大流基 ...

  6. 最详细的springmvc-mybatis教程

    链接:http://blog.csdn.net/qq598535550/article/details/51703190

  7. CentOS7服务器上搭建Gitlab

    Gitlab如何搭建? 安装gitlab所需要的依赖 sudo yum install curl policycoreutils openssh-server openssh-clients 使ssh ...

  8. Leetcode题库——31.下一个排列

    @author: ZZQ @software: PyCharm @file: nextPermutation.py @time: 2018/11/12 15:32 要求: 实现获取下一个排列的函数,算 ...

  9. caffe with anaconda

    https://blog.csdn.net/u013498583/article/details/74231058 https://www.cnblogs.com/youxin/p/4073703.h ...

  10. java小学生四则运算带面板版 但我不知道为什么同类变量却进不了动作监听中去

    ---恢复内容开始--- package yun; import java.util.*; import java.awt.*; import java.awt.event.ActionEvent; ...