Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

【输入样例1】

4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17

【输入样例2】

3 1
1 2 1 1

Sample Output

【输出样例1】

32

【样例说明1】

如果小E走路径1→2→4,需要携带19+15=34个守护精灵;

如果小E走路径1→3→4,需要携带17+17=34个守护精灵;

如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;

如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。

综上所述,小E最少需要携带32个守护精灵。

【输出样例2】

-1

【样例说明2】

小E无法从1号节点到达3号节点,故输出-1。

HINT

2<=n<=50,000

0<=m<=100,000

1<=ai ,bi<=50,000

Solution

LCT

看这道题,就是维护MST嘛

但是有两个量怎么办?

离线,把边按照 \(a\) 的权值排序,枚举 \(a\) 的值,把边权小于等于当前枚举的值的边加入LCT,而LCT维护 \(b\) 的MST

这样就做完了(考虑了每一个 \(a\) 的情况下的最优解,取个 \(min\) 就是答案)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=50000+10,MAXM=100000+10,inf=0x3f3f3f3f;
int n,m,ans=inf,limita,fa[MAXN];
struct edge{
int u,v,a,b;
inline bool operator < (const edge &A) const {
return a<A.a;
};
};
edge side[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],Mx[MAXN+MAXM],id[MAXN+MAXM],val[MAXN+MAXM],stack[MAXN+MAXM],cnt;
inline void init()
{
memset(Mx,0,sizeof(Mx));
memset(id,0,sizeof(id));
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(rev,0,sizeof(rev));
}
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
Mx[x]=val[x],id[x]=x;
if(Mx[lc(x)]>Mx[x])Mx[x]=Mx[lc(x)],id[x]=id[lc(x)];
if(Mx[rc(x)]>Mx[x])Mx[x]=Mx[rc(x)],id[x]=id[rc(x)];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline int findroot(int x)
{
access(x);splay(x);
while(lc(x))pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);
if(findroot(y)!=x)fa[x]=y;
}
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)==x&&fa[y]==x&&!lc(y))lc(x)=fa[y]=0,pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)fa[i]=i;
T.init();
for(register int i=1;i<=m;++i)
{
read(side[i].u),read(side[i].v),read(side[i].a),read(side[i].b);
chkmax(limita,side[i].a);
}
std::sort(side+1,side+m+1);
for(register int a=1,sp=1;a<=limita;++a)
{
while(sp<=m&&side[sp].a<=a)
{
int x=found(side[sp].u),y=found(side[sp].v);
if(x!=y)
{
fa[x]=y;
T.val[sp+n]=side[sp].b;
T.link(sp+n,side[sp].u),T.link(sp+n,side[sp].v);
}
else
{
T.split(side[sp].u,side[sp].v);
int so=T.id[side[sp].v],sn=n+sp;
if(side[sp].b<T.Mx[side[sp].v])
{
T.val[sn]=side[sp].b;
T.cut(so,side[so-n].u);T.cut(so,side[so-n].v);
T.link(sn,side[sp].u);T.link(sn,side[sp].v);
}
}
++sp;
}
if(found(1)==found(n))T.split(1,n),chkmin(ans,a+T.Mx[n]);
}
if(ans==inf)write(-1,'\n');
else write(ans,'\n');
return 0;
}

【刷题】BZOJ 3669 [Noi2014]魔法森林的更多相关文章

  1. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  2. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  3. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  4. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  5. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

  6. 图论 BZOJ 3669 [Noi2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  7. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  8. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  9. bzoj 3669: [Noi2014]魔法森林(并查集+LCT)

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

随机推荐

  1. [Unity] unity5.3 assetbundle打包及加载

    Unity5.3更新了assetbundle的打包和加载api,下面简单介绍使用方法及示例代码. 在Unity中选中一个prefab查看Inspector窗口,有两个位置可以进行assetbundle ...

  2. canvas高效绘制10万图形,你必须知道的高效绘制技巧

    最近的一个客户项目中,简化的需求是绘制按照行列绘制很多个圆圈.需求看起来不难,上手就可以做,写两个for循环. 原始绘制方法 首先定义了很多Circle对象,在遍历循环中调用该对象的draw方法.代码 ...

  3. 快手hr面

    快手hr面 20180918 自我介绍 hr部门介绍 效率工程 主要问题 问我对部门是否有感兴趣? 我要求地点在北京,然后就畅聊口音.老家,学校等 学校的成绩?(研究生.本科) 自己属于哪类学生?(属 ...

  4. Flink BLOB架构

    Flink中支持的BLOB文件类型 jar包 被user classloader使用的jar包 高负荷RPC消息 1. RPC消息长度超出了akka.framesize的大小 2. 在HA摸式中,利用 ...

  5. 搬运_maven打包

    参考文章 利用Maven插件将依赖包.jar/war包及配置文件输出到指定目录 <build> <plugins> <plugin> <groupId> ...

  6. pstree命令详解

    基础命令学习目录首页 pstree命令是用于查看进程树之间的关系,即哪个进程是父进程,哪个是子进程,可以清楚的看出来是谁创建了谁#pstree几个重要的参数:-A: 各进程树之间的连接以ASCII码字 ...

  7. RocEDU.阅读.写作选择书目

    很高兴加入这样一个专门于读书.写作的群. 一.选择图书 通识类: <你的灯亮着吗> 作者: 高斯 (Donald C. Gause) / 温伯格 (Gerald M.Weinberg) 出 ...

  8. Javascript实现大整数加法

    记得之前面试还被问到过用两个字符串实现两个大整数相加,当时还特别好奇好好的整数相加,为什么要用字符串去执行.哈哈,感觉当时自己还是很无知的,面试官肯定特别的无奈.今天在刷算法的时候,无意中看到了为什么 ...

  9. 冲刺One之站立会议6 /2015-5-19

    2015-5-19 今天把服务器端的界面完善了一下,然后大家查了好多资料,实现了登陆界面实际连接的功能,开始加了一个它和服务器的的跳转,但是分析过后发现这是个没有必要的跳转.登录应该直接转到聊天室的主 ...

  10. java微信开发之接受消息回复图片或者文本

    上回说到 接口连接成功,接下来是真正的开发了. 消息的接收,整个过程就是关注订阅号的用户在微信订阅号中发送消息,微信服务器接收到消息,将消息发给开发者的服务器,服务器接收消息然后可以根据内容进行回复. ...