Dijkstra-傻子也能看懂的迪杰斯特拉算法(转)
本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。
- 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。
- 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。
- 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。
- 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。
完整的Dijkstra算法代码如下:
#include <stdio.h>
int main()
{
int e[][],dis[],book[],i,j,n,m,t1,t2,t3,u,v,min;
int inf=; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=inf; //读入边
for(i=;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
} //初始化dis数组,这里是1号顶点到其余各个顶点的初始路程
for(i=;i<=n;i++)
dis[i]=e[][i]; //book数组初始化
for(i=;i<=n;i++)
book[i]=;
book[]=; //Dijkstra算法核心语句
for(i=;i<=n-;i++)
{
//找到离1号顶点最近的顶点
min=inf;
for(j=;j<=n;j++)
{
if(book[j]== && dis[j]<min)
{
min=dis[j];
u=j;
}
}
book[u]=;
for(v=;v<=n;v++)
{
if(e[u][v]<inf)
{
if(dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
} //输出最终的结果
for(i=;i<=n;i++)
printf("%d ",dis[i]); getchar();
getchar();
return ;
}
通过上面的代码我们可以看出,这个算法的时间复杂度是O(N*2*N)即O(N2)。其中每次找到离1号顶点最近的顶点的时间复杂度是O(N),这里我们可以用“堆”(以后再说)来优化,使得这一部分的时间复杂度降低到O(logN)。另外对于边数M少于N2的稀疏图来说(我们把M远小于N2的图称为稀疏图,而M相对较大的图称为稠密图),我们可以用邻接表(这是个神马东西?不要着急,下周再仔细讲解)来代替邻接矩阵,使得整个时间复杂度优化到O(MlogN)。请注意!在最坏的情况下M就是N2,这样的话MlogN要比N2还要大。但是大多数情况下并不会有那么多边,因此MlogN要比N2小很多。
Dijkstra-傻子也能看懂的迪杰斯特拉算法(转)的更多相关文章
- 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...
- C# 迪杰斯特拉算法 Dijkstra
什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...
- dijkstra算法(迪杰斯特拉算法)
dijkstra算法(迪杰斯特拉算法) 用途:有向图最短路径问题 定义:迪杰斯特拉算法是典型的算法,一般的表述通常有两种方式,这里均采用永久和临时标号的方式,该算法要求图中不存在负权边 用永久和临时标 ...
- Dijkstra【迪杰斯特拉算法】
有关最短路径的最后一个算法——Dijkstra 迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特拉于1959 年提出的,因此又叫迪杰斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路 ...
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
- 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...
- 单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)
一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{sourc ...
- (Dijkstra)迪杰斯特拉算法-最短路径算法
迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...
- 迪杰斯特拉算法(Dijkstra) (基础dij+堆优化) BY:优少
首先来一段百度百科压压惊... 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最 ...
随机推荐
- bzoj千题计划132:bzoj1189: [HNOI2007]紧急疏散evacuate
http://www.lydsy.com/JudgeOnline/problem.php?id=1189 二分答案 源点向人连边,流量为1 门拆为mid个点,同一个门的第j个点向第j+1个点连边,流量 ...
- 浅谈splay(点的操作)
浅谈splay(点的操作) 一.基本概念 splay本质:二叉查找树 特点:结点x的左子树权值都小于x的权值,右子树权值都大于x的权值 维护信息: 整棵树:root 当前根节点 sz书上所有结点编号 ...
- 调用weka模拟实现 “主动学习“ 算法
主动学习: 主动学习的过程:需要分类器与标记专家进行交互.一个典型的过程: (1)基于少量已标记样本构建模型 (2)从未标记样本中选出信息量最大的样本,交给专家进行标记 (3)将这些样本与之前样本进行 ...
- Linux命令练习.ziw
2017年1月10日, 星期二 Linux命令练习 1.统计/usr/bin/目录下的文件个数: # ls /usr/bin | wc -l 判断 /home/goldin目录是否有文件 2.取出当前 ...
- soj1011. Lenny's Lucky Lotto
1011. Lenny's Lucky Lotto Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Lenny like ...
- 【转】WPF绑定模式
源地址:http://www.cnblogs.com/zjz008/archive/2010/05/26/1744802.html http://blog.csdn.net/haylhf/articl ...
- HDU 1171 Big Event in HDU(01背包)
题目链接 题意:给出n个物品的价值v,每个物品有m个,设总价值为sum,求a,b.a+b=sum,且a尽可能接近b,a>=b. 题解:01背包. #include <bits/stdc++ ...
- c++刷题(18/100)树
题目1:二叉搜索树的第k个节点 给定一颗二叉搜索树,请找出其中的第k小的结点.例如, 5 / \ 3 7 /\ /\ 2 4 6 8 中,按结点数值大小顺序第三个结点的值为4. 思路:因为是二叉搜索树 ...
- 【Linux 命令】sed 命令
文章转载自:https://www.jianshu.com/p/779f40985b20 文本分隔:------ # 在每一行后面增加一空行. sed G # 在每一行后面增加两行空行. sed &q ...
- TI的H264 SOC方案
TI的H264 SOC方案是目前常用的视讯解决方案,TI针对视频会议,视频监控,视频存储等场景细化需求并优化了H264技术. 1. TI H.264背景 如今视频压缩技术在视频领域有非常多的应用需求. ...