本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。

 
        与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下。
 
        我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。
 
        我们将此时dis数组中的值称为最短路的“估计值”。
        既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值。为什么呢?你想啊,目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了。因为1号顶点到其它顶点的路程肯定没有1号到2号顶点短,对吧O(∩_∩)O~
        既然选了2号顶点,接下来再来看2号顶点有哪些出边呢。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短。也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程。dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,再通过2->3这条边,到达3号顶点的路程。
        我们发现dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”。即1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程。
        同理通过2->4(e[2][4]),可以将dis[4]的值从∞松弛为4(dis[4]初始为∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此dis[4]要更新为4)。
        刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:
 
        接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过dis数组,当前离1号顶点最近是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对4号顶点的所有出边(4->3,4->5和4->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:
 
        继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,这次选择3号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对3号顶点的所有出边(3->5)进行松弛。松弛完毕之后dis数组为:
 
        继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后dis数组为:
 
        最后对6号顶点所有点出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。
        最终dis数组如下,这便是1号顶点到其余各个顶点的最短路径。
 
        OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:
  • 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。
  • 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。
  • 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。
  • 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

完整的Dijkstra算法代码如下:

     #include <stdio.h>
int main()
{
int e[][],dis[],book[],i,j,n,m,t1,t2,t3,u,v,min;
int inf=; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=inf; //读入边
for(i=;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
} //初始化dis数组,这里是1号顶点到其余各个顶点的初始路程
for(i=;i<=n;i++)
dis[i]=e[][i]; //book数组初始化
for(i=;i<=n;i++)
book[i]=;
book[]=; //Dijkstra算法核心语句
for(i=;i<=n-;i++)
{
//找到离1号顶点最近的顶点
min=inf;
for(j=;j<=n;j++)
{
if(book[j]== && dis[j]<min)
{
min=dis[j];
u=j;
}
}
book[u]=;
for(v=;v<=n;v++)
{
if(e[u][v]<inf)
{
if(dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
} //输出最终的结果
for(i=;i<=n;i++)
printf("%d ",dis[i]); getchar();
getchar();
return ;
}

通过上面的代码我们可以看出,这个算法的时间复杂度是O(N*2*N)即O(N2)。其中每次找到离1号顶点最近的顶点的时间复杂度是O(N),这里我们可以用“堆”(以后再说)来优化,使得这一部分的时间复杂度降低到O(logN)。另外对于边数M少于N2的稀疏图来说(我们把M远小于N2的图称为稀疏图,而M相对较大的图称为稠密图),我们可以用邻接表(这是个神马东西?不要着急,下周再仔细讲解)来代替邻接矩阵,使得整个时间复杂度优化到O(MlogN)。请注意!在最坏的情况下M就是N2,这样的话MlogN要比N2还要大。但是大多数情况下并不会有那么多边,因此MlogN要比N2小很多。

Dijkstra-傻子也能看懂的迪杰斯特拉算法(转)的更多相关文章

  1. 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)

    Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...

  2. C# 迪杰斯特拉算法 Dijkstra

    什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...

  3. dijkstra算法(迪杰斯特拉算法)

    dijkstra算法(迪杰斯特拉算法) 用途:有向图最短路径问题 定义:迪杰斯特拉算法是典型的算法,一般的表述通常有两种方式,这里均采用永久和临时标号的方式,该算法要求图中不存在负权边 用永久和临时标 ...

  4. Dijkstra【迪杰斯特拉算法】

    有关最短路径的最后一个算法——Dijkstra 迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特拉于1959 年提出的,因此又叫迪杰斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路 ...

  5. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  6. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  7. 单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)

    一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{sourc ...

  8. (Dijkstra)迪杰斯特拉算法-最短路径算法

    迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...

  9. 迪杰斯特拉算法(Dijkstra) (基础dij+堆优化) BY:优少

    首先来一段百度百科压压惊... 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最 ...

随机推荐

  1. js检测上传文件大小

    前言: 项目中经常用到需要上传文件.照片等功能,同时需要限制所上传文件的大小.很多插件都会采用后台请求验证,前端Js校验比较少.本篇介绍一个前端JS便捷判断上传文件大小的方法. 代码很简单,关键就是怎 ...

  2. CSS3实战之box-shadow篇

    box-shadow属性包含6个参数值:阴影类型.X轴位移.Y轴位移.阴影大小.阴影扩展和阴影颜色.这6个参数值可以有选择地省略. 现在我们用一个img元素来举栗子 我们先来写最简单的box-shad ...

  3. JavaScript语法对{}的奇葩处理

    JavaScript的语法有多坑,算是众人皆知了. 今天看到vczh的这条微博:http://weibo.com/1916825084/B7qUFpOKb , 代码如下: {} + []; [] + ...

  4. 配置ODBC DSN数据源,导出数据库数据到Excel过程记录

    一.前言 工作中我们可能遇到这样的需要:查询数据库中的信息,并将结果导出到Excel文件.这本来没什么,但数据量比较大时,用PLSQL.toad导出Excel会出现内存不足等情况,使用odbc+Mic ...

  5. 【译】第二篇 Integration Services:SSIS数据泵

    本篇文章是Integration Services系列的第二篇,详细内容请参考原文. 简介SSIS用于移动数据.数据流任务提供此功能.因为这个原因,当介绍SSIS时我喜欢从数据流任务开始.数据流任务的 ...

  6. C++ Primer 5th 第19章 特殊工具与技术

    C++是一种通用型语言,其设计者希望它能处理各种各样的问题,因此除了一些能适用于所有问题的语言特性,还有一些适用于特定问题的特性. 控制内存分配 某些程序对内存分配有着特殊的需求,它们不适合使用标准的 ...

  7. shell脚本实现分日志级别输出

    shell脚本如何优雅的记录日志信息,下面让我们一步一步,让shell脚本的日志也变得高端起来,实现如下功能 ①设定日志级别,实现可以输出不同级别的日志信息,方便调试 ②日志格式类似为:[日志级别] ...

  8. FFmpeg命令行工具和批处理脚本进行简单的音视频文件编辑

    FFmpeg_Tutorial FFmpeg工具和sdk库的使用demo 一.使用FFmpeg命令行工具和批处理脚本进行简单的音视频文件编辑 1.基本介绍 对于每一个从事音视频技术开发的工程师,想必没 ...

  9. python基础学习之路No.3 控制流if,while,for

    在学习编程语言的过程中,有一个很重要的东西,它就是判断,也可以称为控制流. 一般有if.while.for三种 ⭐if语句 if语句可以有一个通俗的解释,如果.假如 如果条件1满足,则…… 如果条件2 ...

  10. Unix IPC之pipe

    pipe创建函数: #include <unistd.h> /* Create a one-way communication channel (pipe). If successful, ...