Spark入门1(以WordCount为例讲解flatmap和map之间的区别)
package com.test import org.apache.spark.{SparkConf, SparkContext} object WordCount {
def main(args: Array[String]) {
/**
* 第1步;创建Spark的配置对象SparkConf,设置Spark程序运行时的配置信息
* 例如 setAppName用来设置应用程序的名称,在程序运行的监控界面可以看到该名称,
* setMaster设置程序运行在本地还是运行在集群中,运行在本地可是使用local参数,也可以使用local[K]/local[*],
* 可以去spark官网查看它们不同的意义。 如果要运行在集群中,以Standalone模式运行的话,需要使用spark://HOST:PORT
* 的形式指定master的IP和端口号,默认是7077
*/
val conf = new SparkConf().setAppName("WordCount").setMaster("local")
// val conf = new SparkConf().setAppName("WordCount").setMaster("spark://master:7077") // 运行在集群中 /**
* 第2步:创建SparkContext 对象
* SparkContext是Spark程序所有功能的唯一入口
* SparkContext核心作用: 初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler、TaskScheduler、SchedulerBackend
* 同时还会负责Spark程序往Master注册程序
*
* 通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
*/
val sc = new SparkContext(conf) /**
* 第3步: 根据具体的数据来源(HDFS、 HBase、Local FS、DB、 S3等)通过SparkContext来创建RDD
* RDD 的创建基本有三种方式: 根据外部的数据来源(例如HDFS)、根据Scala集合使用SparkContext的parallelize方法、
* 由其他的RDD操作产生
* 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
*/ val lines = sc.textFile("D:/wordCount.txt") // 读取本地文件
// val lines = sc.textFile("/library/wordcount/input") // 读取HDFS文件,并切分成不同的Partition
// val lines = sc.textFile("hdfs://master:9000/libarary/wordcount/input") // 或者明确指明是从HDFS上获取数据 /**
* 第4步: 对初始的RDD进行Transformation级别的处理,例如 map、filter等高阶函数来进行具体的数据计算
*/
val words = lines.flatMap(_.split(" ")).filter(word => word != " ") // 拆分单词,并过滤掉空格,当然还可以继续进行过滤,如去掉标点符号 val pairs = words.map(word => (word, 1)) // 在单词拆分的基础上对每个单词实例计数为1, 也就是 word => (word, 1) val wordscount = pairs.reduceByKey(_ + _) // 在每个单词实例计数为1的基础之上统计每个单词在文件中出现的总次数, 即key相同的value相加
// val wordscount = pairs.reduceByKey((v1, v2) => v1 + v2) // 等同于 wordscount.collect.foreach(println) // 打印结果,使用collect会将集群中的数据收集到当前运行drive的机器上,需要保证单台机器能放得下所有数据 sc.stop() // 释放资源 }
}
package com.test import org.apache.spark.{SparkConf, SparkContext} object WordCount {
def main(args: Array[String]) {
/**
* 第1步;创建Spark的配置对象SparkConf,设置Spark程序运行时的配置信息
* 例如 setAppName用来设置应用程序的名称,在程序运行的监控界面可以看到该名称,
* setMaster设置程序运行在本地还是运行在集群中,运行在本地可是使用local参数,也可以使用local[K]/local[*],
* 可以去spark官网查看它们不同的意义。 如果要运行在集群中,以Standalone模式运行的话,需要使用spark://HOST:PORT
* 的形式指定master的IP和端口号,默认是7077
*/
val conf = new SparkConf().setAppName("WordCount").setMaster("local")
// val conf = new SparkConf().setAppName("WordCount").setMaster("spark://master:7077") // 运行在集群中 /**
* 第2步:创建SparkContext 对象
* SparkContext是Spark程序所有功能的唯一入口
* SparkContext核心作用: 初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler、TaskScheduler、SchedulerBackend
* 同时还会负责Spark程序往Master注册程序
*
* 通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
*/
val sc = new SparkContext(conf) /**
* 第3步: 根据具体的数据来源(HDFS、 HBase、Local FS、DB、 S3等)通过SparkContext来创建RDD
* RDD 的创建基本有三种方式: 根据外部的数据来源(例如HDFS)、根据Scala集合使用SparkContext的parallelize方法、
* 由其他的RDD操作产生
* 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
*/ val lines = sc.textFile("D:/data/kddcup.data_10_percent_corrected") // 读取本地文件
// val lines = sc.textFile("/library/wordcount/input") // 读取HDFS文件,并切分成不同的Partition
// val lines = sc.textFile("hdfs://master:9000/libarary/wordcount/input") // 或者明确指明是从HDFS上获取数据 /**
* 第4步: 对初始的RDD进行Transformation级别的处理,例如 map、filter等高阶函数来进行具体的数据计算
*/
println("words")
//val words = lines.flatMap(_.split(" ")) // flatMap是将整个lines文件中的字母做拆分,返回的是一整个拆分后的list val pairs = lines.map(word => (word.split(",")(41), 1)) // Map是按行拆分,找到每行的第41个,实例计数为1,返回的是一个大list里面套了小的list val wordscount = pairs.reduceByKey(_ + _) // 在每个单词实例计数为1的基础之上统计每个单词在文件中出现的总次数, 即key相同的value相加
// val wordscount = pairs.reduceByKey((v1, v2) => v1 + v2) // 等同于 wordscount.collect.foreach(println) // 打印结果,使用collect会将集群中的数据收集到当前运行drive的机器上,需要保证单台机器能放得下所有数据 sc.stop() // 释放资源 }
}
博客中有两段很长的代码,我们重点关注第一段的43行和第二段的47行,我们可以看到第一段用了flatmap而第二段用了map。那这之间有什么区别呢?
第一段代码是以空格为间隔符读取统计txt文档中出现的单词数量,其中要注意的是行与行之间的分隔符也是“ ”,所以它只用一个flatmap就可以搞定,将所有单词用“ ”分割,取出,统计数量。而第二段代码是以“,”为分隔符统计每一行第41个单词的数量,这里就不能用flatmap了,因为flatmap是将整个文件的单词整合起来成为一个list,与map不同的是flatmap多加了一个flat(映射)的功能,所以我们就找不到第41个单词了。这里用map,最后没有映射,输出的是一个大list里面套了很多小list,每一个小list代表一行,所以我们就可以操作这些小list去找到第41个单词并统计。
来自博客:
http://blog.csdn.net/dwb1015/article/details/52013362
Spark入门1(以WordCount为例讲解flatmap和map之间的区别)的更多相关文章
- 提交任务到spark(以wordcount为例)
1.首先需要搭建好hadoop+spark环境,并保证服务正常.本文以wordcount为例. 2.创建源文件,即输入源.hello.txt文件,内容如下: tom jerry henry jim s ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark入门实战系列--10.分布式内存文件系统Tachyon介绍及安装部署
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Tachyon介绍 1.1 Tachyon简介 随着实时计算的需求日益增多,分布式内存计算 ...
- Spark入门实战系列--1.Spark及其生态圈简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...
- spark 入门学习 核心api
spark入门教程(3)--Spark 核心API开发 原创 2016年04月13日 20:52:28 标签: spark / 分布式 / 大数据 / 教程 / 应用 4999 本教程源于2016年3 ...
- Spark 入门
Spark 入门 目录 一. 1. 2. 3. 二. 三. 1. 2. 3. (1) (2) (3) 4. 5. 四. 1. 2. 3. 4. 5. 五. Spark Shell使用 ...
- 使用scala开发spark入门总结
使用scala开发spark入门总结 一.spark简单介绍 关于spark的介绍网上有很多,可以自行百度和google,这里只做简单介绍.推荐简单介绍连接:http://blog.jobbole.c ...
- Spark入门实战系列--2.Spark编译与部署(下)--Spark编译安装
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .编译Spark .时间不一样,SBT是白天编译,Maven是深夜进行的,获取依赖包速度不同 ...
- Spark入门实战系列--3.Spark编程模型(上)--编程模型及SparkShell实战
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spar ...
随机推荐
- 使用object_box遇到的崩溃 java.lang.UnsatisfiedLinkError:
java.lang.UnsatisfiedLinkError: dalvik.system.PathClassLoader[DexPathList[[zip file "/data/app/ ...
- shell的父子进程
2017年1月11日, 星期三 shell的父子进程 启动/执行方式: 当前shell: #!/bin/bash 必须行首 ...
- SSM简单整合教程&测试事务
自打来了博客园就一直在看帖,学到了很多知识,打算开始记录的学习到的知识点 今天我来写个整合SpringMVC4 spring4 mybatis3&测试spring事务的教程,如果有误之处,还请 ...
- 【leetcode 简单】 第六十九题 删除链表中的节点
请编写一个函数,使其可以删除某个链表中给定的(非末尾)节点,你将只被给定要求被删除的节点. 现有一个链表 -- head = [4,5,1,9],它可以表示为: 4 -> 5 -> 1 - ...
- jQuery基础之二(操作标签)
一:样式操作 addClass();// 添加指定的CSS类名. removeClass();// 移除指定的CSS类名. hasClass();// 判断样式存不存在 toggleClass();/ ...
- C++面试常见问题
转载:https://zhuanlan.zhihu.com/p/34016871?utm_source=qq&utm_medium=social 1.在C++ 程序中调用被C 编译器编译后的函 ...
- nanosleep()
函数原型 #include <time.h> int nanosleep(const struct timespec *rqtp, struct timespec *rmtp); 描述 ...
- mysql高可用架构 -> MHA部署-04
MHA架构图 本次MHA的部署基于GTID复制成功构建,普通主从复制也可以构建MHA架构. 下载所需的软件包 mkdir /server/tools -p //创建存放包的目录 [root@db01 ...
- 数据库-mysql数据类型
MySQL 数据类型 MySQL中定义数据字段的类型对你数据库的优化是非常重要的. MySQL支持多种类型,大致可以分为三类:数值.日期/时间和字符串(字符)类型. 数值类型 MySQL支持所有标准S ...
- java基础55 UDP通讯协议和TCP通讯协议
本文知识点(目录): 1.概述 2.UDP通讯协议 3.TCPP通讯协议 1.概述 1.在java中网络通讯作为Socket(插座)通讯,要求两台都必须安装socket. 2.不同的 ...