bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041
设 X>0 ,Y>0
X^2 + Y^2 = R^2
X^2 = R^2-Y^2 = (R+Y)(R-Y)
令 d=gcd(R+Y,R-Y),A=(R+Y)/d,B=(R-Y)/d
则 gcd(A,B)=1,且A != B
X^2= d^2 *A * B
所以 A * B 为 完全平方数
又因为 gcd(A,B)=1 ,A!=B,所以 A,B 都是 完全平方数
令 a= 根号A,b=根号B
a^2 + b ^2 = 2*R / d
所以 d 必须是 2*R 的 约数
根号(2*R) 枚举 约数 d
1、a^2 + b^2 = 2*R / d
2、a^2 + b^2 = d
对于 每一种 情况 分别 根号复杂度 枚举 a,计算b
判断相应的 A ,B 是否满足 gcd=1 且 A!=B
满足则 ans+1
这只算出了第一象限的情况
根据园的对称性,ans*4 可得 所有 象限内的点
最后在加上4个在 坐标轴上的点即可
#include<cmath>
#include<cstdio> using namespace std; typedef long long LL; LL R; int ans=; int gcd(int A,int B) { return !B ? A : gcd(B,A%B); } void solve(int t,int d)
{
int n=sqrt(t*1.0);
int A,B,b;
for(LL a=;a<=n;++a)
{
B=t-a*a; b=sqrt(B);
if(b*b!=B || !B) continue;
A=a*a;
if(gcd(A,B)== && A!=B) ans++;
}
} int main()
{
scanf("%lld",&R);
int n=sqrt(R*2.0);
for(int d=;d<=n;++d)
{
if(R*%d==)
{
solve(*R/d,d);
if(d*d!=n) solve(d,*R/d);
}
}
ans/=;
ans=ans*+;
printf("%d",ans);
}
1041: [HAOI2008]圆上的整点
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4640 Solved: 2092
[Submit][Status][Discuss]
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
只有一个正整数n,n<=2000 000 000
Output
整点个数
Sample Input
Sample Output
bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点的更多相关文章
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
随机推荐
- C++第一次作业
Github地址点这里
- 剑指offer:矩形覆盖
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...
- 【CS231N】6、神经网络动态部分:损失函数等
一.疑问 二.知识点 1. 损失函数可视化 损失函数一般都是定义在高维度的空间中,这样要将其可视化就很困难.然而办法还是有的,在1个维度或者2个维度的方向上对高维空间进行切片,例如,随机生成一个权 ...
- SqlServer中的dbo是什么意思
出处:http://andylin02.iteye.com/blog/486296 SqlServer中的dbo是什么意思? DBO是每个数据库的默认用户,具有所有者权限,即DbOwner 通过用DB ...
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.14
1.当天站立式会议照片 本次会议在5号公寓1楼召开,本次会议内容:①:熟悉每个人想做的模块.②:根据老师的要求将项目划分成一系列小任务.③:选择项目的开发模式:jsp+servlet+javabean ...
- 简单复利计算java板
一.要求: 1.客户说:帮我开发一个复利计算软件. 2如果按照单利计算,本息又是多少呢? 3.假如30年之后要筹措到300万元的养老金,平均的年回报率是3%,那么,现在必须投入的本金是多少呢? 4.利 ...
- chrome浏览器下的xdebug helper使用方法
chrome浏览器下的xdebug helper使用方法 自从安装了xdebug后,发现每次调试都需要从eclipse中先从头启动,然后一步步走到你要调试的页面,而不是说想什么时候调试就什么时 ...
- PHP中define和defined的区别
PHP中define和defined的区别 对于初学者会混淆这两个函数 1.define用来定义一个常量,常量也是全局范围的.不用管作用域就可以在脚本的任何地方访问 常量.一个常量一旦被定义,就不能再 ...
- 开源自己实现一个.net rpc框架 - Machete.Rpc
Machete.Rpc Machete.Rpc 是一个轻量级的Rpc(远程过程调用的)框架.底层代理使用了Emit提高了效率,底层通信采用DotNetty框架以提升通信的效率.目前正在逐步完善中. G ...
- python 查看与更换工作目录
1. 进入python控制台 2. 查看工作路径,需要导入os包: import os 3. 查看工作路径的命令: os.getcwd() 4. 修改工作路径的命令: os.chdir("d ...